Electric and Magnetic Fields due to Accelerated Charge

eb-8ef68b06-408f-4fca-9a0a-0f1c4a31a2ce
The Liénard-Wiechert potentials are given as:
Φ ( r , t ) = 1 4 π ϵ 0 q c ( R c R v ) A ( r , t ) = v c 2 Φ ( r , t ) Φ ( r , t ) = 1 4 π ϵ 0 q c ( R c R v ) A ( r , t ) = v c 2 Φ ( r , t ) {:[Phi( vec(r)”,”t)=(1)/(4piepsilon_(0))(qc)/((Rc-( vec(R))*( vec(v))))],[ vec(A)( vec(r)”,”t)=(( vec(v)))/(c^(2))Phi( vec(r)”,”t)]:}\begin{aligned} & \Phi(\vec{r}, t)=\frac{1}{4 \pi \epsilon_0} \frac{q c}{(R c-\vec{R} \cdot \vec{v})} \\ & \vec{A}(\vec{r}, t)=\frac{\vec{v}}{c^2} \Phi(\vec{r}, t) \end{aligned}Φ(r,t)=14πϵ0qc(RcRv)A(r,t)=vc2Φ(r,t)
These equations can now be used to calculate the ( E , B ) ( E , B ) ( vec(E), vec(B))(\mathbf{\vec{E}, \vec{B}})(E,B) due to a point charge in accelerated motion, using the equations:
E = Φ A t B = × A E = Φ A t B = × A {:[ vec(E)=- vec(grad)Phi-(del( vec(A)))/(del t)],[ vec(B)= vec(grad)xx vec(A)]:}\begin{aligned} & \vec{E}=-\vec{\nabla} \Phi-\frac{\partial \vec{A}}{\partial t} \\ & \vec{B}=\vec{\nabla} \times \vec{A} \end{aligned}E=ΦAtB=×A
Calculation of E E vec(E)\mathbf{\vec{E}}E :
E = Φ A t E = Φ A t {: vec(E)=- vec(grad)Phi-(del( vec(A)))/(del t):}\begin{aligned} \vec{E}=-\vec{\nabla} \Phi-\frac{\partial \vec{A}}{\partial t} \\ \end{aligned}E=ΦAt
Here,
Φ = q c 4 π ϵ 0 [ ( R c R v ) 1 ] = q c 4 π ϵ 0 ( 1 ) ( R c R v ) 2 ( R c R v ) Φ = q c 4 π ϵ 0 1 ( R c R v ) 2 [ ( R v ) c R ] Φ = q c 4 π ϵ 0 ( R c R v ) 1 = q c 4 π ϵ 0 ( 1 ) ( R c R v ) 2 ( R c R v ) Φ = q c 4 π ϵ 0 1 ( R c R v ) 2 [ ( R v ) c R ] {:[ vec(grad)Phi=(qc)/(4piepsilon_(0)) vec(grad)[(Rc-( vec(R))*( vec(v)))^(-1)]],[=(qc)/(4piepsilon_(0))((-1))/((Rc-( vec(R))*( vec(v)))^(2)) vec(grad)(Rc- vec(R)* vec(v))],[=> vec(grad)Phi=(qc)/(4piepsilon_(0))(1)/((Rc-( vec(R))*( vec(v)))^(2))[ vec(grad)( vec(R)* vec(v))-c vec(grad)R]]:}\begin{aligned} \vec{\nabla} \Phi & =\frac{q c}{4 \pi \epsilon_0} \vec{\nabla}\left[(R c-\vec{R} \cdot \vec{v})^{-1}\right] \\ & =\frac{q c}{4 \pi \epsilon_0} \frac{(-1)}{(R c-\vec{R} \cdot \vec{v})^2} \vec{\nabla}(R c-\vec{R} \cdot \vec{v}) \\ \Rightarrow \vec{\nabla} \Phi & =\frac{q c}{4 \pi \epsilon_0} \frac{1}{(R c-\vec{R} \cdot \vec{v})^2}[\vec{\nabla}(\vec{R} \cdot \vec{v})-c \vec{\nabla} R] \end{aligned}Φ=qc4πϵ0[(RcRv)1]=qc4πϵ0(1)(RcRv)2(RcRv)Φ=qc4πϵ01(RcRv)2[(Rv)cR]
Φ = q c 4 π ϵ 0 1 ( R c R v ) 2 [ ( R v ) c R ] , ( 1 ) Φ = q c 4 π ϵ 0 1 ( R c R v ) 2 [ ( R v ) c R ] , 1 {: vec(grad)Phi=(qc)/(4piepsilon_(0))(1)/((Rc-( vec(R))*( vec(v)))^(2))[ vec(grad)( vec(R)* vec(v))-c vec(grad)R]”,” dots(1):}\begin{aligned} \vec{\nabla} \Phi=\frac{q c}{4 \pi \epsilon_0} \frac{1}{(R c-\vec{R} \cdot \vec{v})^2}[\vec{\nabla}(\vec{R} \cdot \vec{v})-c \vec{\nabla} R], & \ldots\left(\mathrm{1}\right)\\ \end{aligned}Φ=qc4πϵ01(RcRv)2[(Rv)cR],(1)
Since retarded time is given by:
t r = t R c R = c ( t t r ) t r = t R c R = c t t r {:[t_(r)=t-(R)/(c)],[=>R=c(t-t_(r))]:}\begin{aligned} t_r & =t-\frac{R}{c} \\ \Rightarrow R & =c\left(t-t_r\right) \end{aligned}tr=tRcR=c(ttr)
This gives
R = c t r R = c t r vec(grad)R=-c vec(grad)t_(r)\vec{\nabla} R=-c \vec{\nabla} t_rR=ctr
Solving for 1st term in equation 1:\
Using the product rule:
( X Y ) = ( X ) Y + ( Y ) X + X × ( × Y ) + Y × ( × X ) ( R v ) = ( R ) v + ( v ) R + R × ( × v ) + v × ( × R ) ) , ( 2 ) ( X Y ) = ( X ) Y + ( Y ) X + X × ( × Y ) + Y × ( × X ) ( R v ) = ( R ) v + ( v ) R + R × ( × v ) + v × ( × R ) ) , 2 {:[ vec(grad)( vec(X)* vec(Y))=( vec(X)* vec(grad)) vec(Y)+( vec(Y)* vec(grad)) vec(X)+ vec(X)xx( vec(grad)xx vec(Y))+ vec(Y)xx( vec(grad)xx vec(X))],[=>grad( vec(R)* vec(v))=( vec(R)* vec(grad)) vec(v)+( vec(v)* vec(grad)) vec(R)+ vec(R)xx( vec(grad)xx vec(v))+ vec(v)xx( vec(grad)xx vec(R)))”,”dots(2)]:}\begin{aligned} \vec{\nabla}(\vec{X} \cdot \vec{Y})=(\vec{X} \cdot \vec{\nabla}) \vec{Y}+(\vec{Y} \cdot \vec{\nabla}) \vec{X}+\vec{X} \times(\vec{\nabla} \times \vec{Y})+\vec{Y} \times(\vec{\nabla} \times \vec{X}) \\ \Rightarrow{\boldsymbol{\nabla}}(\overrightarrow{\boldsymbol{R}} \cdot \overrightarrow{\boldsymbol{v}})=(\overrightarrow{\boldsymbol{R}} \cdot \overrightarrow{\boldsymbol{\nabla}}) \overrightarrow{\boldsymbol{v}}+(\overrightarrow{\boldsymbol{v}} \cdot \overrightarrow{\boldsymbol{\nabla}}) \overrightarrow{\boldsymbol{R}}+\overrightarrow{\boldsymbol{R}} \times(\overrightarrow{\boldsymbol{\nabla}} \times \overrightarrow{\boldsymbol{v}})+\overrightarrow{\boldsymbol{v}} \times(\overrightarrow{\boldsymbol{\nabla}} \times \overrightarrow{\boldsymbol{R}})),\ldots\left(\mathrm{2}\right)\\ \end{aligned}(XY)=(X)Y+(Y)X+X×(×Y)+Y×(×X)(Rv)=(R)v+(v)R+R×(×v)+v×(×R)),(2)
1st term in eq. (2):
( R ) v = ( R x x + R y y + R z z ) v ( t r ) = R x d v d t r t r x + R y d v d t r t r y + R z d v d t r t r z = a ( R t r ) ( R ) v = R x x + R y y + R z z v t r = R x d v d t r t r x + R y d v d t r t r y + R z d v d t r t r z = a R t r {:[( vec(R)* vec(grad)) vec(v)=(R_(x)(del)/(del x)+R_(y)(del)/(del y)+R_(z)(del)/(del z)) vec(v)(t_(r))],[=R_(x)(d( vec(v)))/((d)t_(r))(delt_(r))/(del x)+R_(y)(d( vec(v)))/((d)t_(r))(delt_(r))/(del y)+R_(z)(d( vec(v)))/((d)t_(r))(delt_(r))/(del z)],[= vec(a)(( vec(R))*( vec(grad))t_(r))]:}\begin{aligned} (\overrightarrow{\boldsymbol{R}} \cdot \vec{\nabla}) \vec{v} & =\left(R_x \frac{\partial}{\partial x}+R_y \frac{\partial}{\partial y}+R_z \frac{\partial}{\partial z}\right) \vec{v}\left(t_r\right) \\ & =R_x \frac{\mathrm{d} \vec{v}}{\mathrm{~d} t_r} \frac{\partial t_r}{\partial x}+R_y \frac{\mathrm{d} \vec{v}}{\mathrm{~d} t_r} \frac{\partial t_r}{\partial y}+R_z \frac{\mathrm{d} \vec{v}}{\mathrm{~d} t_r} \frac{\partial t_r}{\partial z} \\ & =\vec{a}\left(\vec{R} \cdot \vec{\nabla} t_r\right) \end{aligned}(R)v=(Rxx+Ryy+Rzz)v(tr)=Rxdv dtrtrx+Rydv dtrtry+Rzdv dtrtrz=a(Rtr)
2nd term in eq. (2):
( v ) R = ( v ) r ( v ) w ( v ) R = ( v ) r ( v ) w ( vec(v)* vec(grad)) vec(R)=( vec(v)* vec(grad)) vec(r)-( vec(v)* vec(grad)) vec(w)(\overrightarrow{\boldsymbol{v}} \cdot \overrightarrow{\boldsymbol{\nabla}}) \overrightarrow{\boldsymbol{R}}=(\overrightarrow{\boldsymbol{v}} \cdot \overrightarrow{\boldsymbol{\nabla}}) \overrightarrow{\boldsymbol{r}}-(\overrightarrow{\boldsymbol{v}} \cdot \overrightarrow{\boldsymbol{\nabla}}) \overrightarrow{\boldsymbol{w}}\\(v)R=(v)r(v)w
As,
R = r w ( t r ) R = r w ( t r ) {: vec(R)= vec(r)- vec(w)(t_(r)):}\begin{aligned} \overrightarrow{\boldsymbol{R}}= \overrightarrow{\boldsymbol{r}}- \overrightarrow{\boldsymbol{w}}\boldsymbol{(t_r)}\\ \end{aligned}R=rw(tr)
Here,
( v ) r = ( v x x + v y y + v z z ) ( x i ^ + y j ^ + z k ^ ) = v x i ^ + v y j ^ + v z k ^ = v ( v ) r = v x x + v y y + v z z ( x i ^ + y j ^ + z k ^ ) = v x i ^ + v y j ^ + v z k ^ = v {:[( vec(v)* vec(grad)) vec(r)=(v_(x)(del)/(del x)+v_(y)(del)/(del y)+v_(z)(del)/(del z))(x hat(i)+y hat(j)+z hat(k))],[=v_(x) hat(i)+v_(y) hat(j)+v_(z) hat(k)= vec(v)]:}\begin{aligned} (\overrightarrow{\boldsymbol{v}} \cdot \overrightarrow{\boldsymbol{\nabla}}) \overrightarrow{\boldsymbol{r}} & =\left(v_x \frac{\partial}{\partial x}+v_y \frac{\partial}{\partial y}+v_z \frac{\partial}{\partial z}\right)(x \hat{\boldsymbol{i}}+y \hat{\boldsymbol{j}}+z \hat{\boldsymbol{k}}) \\ & =v_x \hat{\boldsymbol{i}}+v_y \hat{\boldsymbol{j}}+v_z \hat{\boldsymbol{k}}=\overrightarrow{\boldsymbol{v}} \end{aligned}(v)r=(vxx+vyy+vzz)(xi^+yj^+zk^)=vxi^+vyj^+vzk^=v
Proceeding in a similar manner as for the 1st term in eq. (2):
( v ) w = v ( v t r ) ( v ) w = v v t r ( vec(v)* vec(grad)) vec(w)= vec(v)( vec(v)* vec(grad)t_(r))(\overrightarrow{\boldsymbol{v}} \cdot \overrightarrow{\boldsymbol{\nabla}}) \overrightarrow{\boldsymbol{w}}=\overrightarrow{\boldsymbol{v}}\left(\overrightarrow{\boldsymbol{v}} \cdot \overrightarrow{\boldsymbol{\nabla}} t_r\right)(v)w=v(vtr)
Hence, we obtain
( v ) R = v v ( v t r ) ( v ) R = v v v t r ( vec(v)* vec(grad)) vec(R)= vec(v)- vec(v)( vec(v)* vec(grad)t_(r))(\overrightarrow{\boldsymbol{v}} \cdot \overrightarrow{\boldsymbol{\nabla}}) \overrightarrow{\boldsymbol{R}}=\overrightarrow{\boldsymbol{v}}-\overrightarrow{\boldsymbol{v}}\left(\overrightarrow{\boldsymbol{v}}\cdot \overrightarrow{\boldsymbol{\nabla}} t_r\right)(v)R=vv(vtr)
3rd term in eq. (2):
× v = ( v z y v y z ) i ^ + ( v x z v z x ) j ^ + ( v y x v x y ) k ^ = ( d v z d t r t r y d v y d t r t r z ) i ^ + = a × t r × v = v z y v y z i ^ + v x z v z x j ^ + v y x v x y k ^ = d v z d t r t r y d v y d t r t r z i ^ + = a × t r {:[ vec(grad)xx vec(v)=((delv_(z))/(del y)-(delv_(y))/(del z)) hat(i)+((delv_(x))/(del z)-(delv_(z))/(del x)) hat(j)+((delv_(y))/(del x)-(delv_(x))/(del y)) hat(k)],[=((dv_(z))/((d)t_(r))(delt_(r))/(del y)-(dv_(y))/((d)t_(r))(delt_(r))/(del z)) hat(i)+cdots],[=- vec(a)xx vec(grad)t_(r)]:}\begin{aligned} \overrightarrow{\boldsymbol{\nabla}} \times \overrightarrow{\boldsymbol{v}} & =\left(\frac{\partial v_z}{\partial y}-\frac{\partial v_y}{\partial z}\right) \hat{\boldsymbol{i}}+\left(\frac{\partial v_x}{\partial z}-\frac{\partial v_z}{\partial x}\right) \hat{\boldsymbol{j}}+\left(\frac{\partial v_y}{\partial x}-\frac{\partial v_x}{\partial y}\right) \hat{\boldsymbol{k}} \\ & =\left(\frac{\mathrm{d} v_z}{\mathrm{~d} t_r} \frac{\partial t_r}{\partial y}-\frac{\mathrm{d} v_y}{\mathrm{~d} t_r} \frac{\partial t_r}{\partial z}\right) \hat{\boldsymbol{i}}+\cdots \\ & =-\overrightarrow{\boldsymbol{a}} \times \overrightarrow{\boldsymbol{\nabla}} t_r \end{aligned}×v=(vzyvyz)i^+(vxzvzx)j^+(vyxvxy)k^=(dvz dtrtrydvy dtrtrz)i^+=a×tr
Therefore,
R × ( × v ) = R × ( a × t r ) R × ( × v ) = R × a × t r vec(R)xx( vec(grad)xx vec(v))=- vec(R)xx( vec(a)xx vec(grad)t_(r))\overrightarrow{\boldsymbol{R}} \times(\vec{\nabla} \times \overrightarrow{\boldsymbol{v}})=-\overrightarrow{\boldsymbol{R}} \times\left(\overrightarrow{\boldsymbol{a}} \times \overrightarrow{\boldsymbol{\nabla}} t_r\right)R×(×v)=R×(a×tr)
4th term in eq. (2): (Same as 3rd term in eq. 2)
× R = × r × w = 0 [ v × t r ] = v × t r × R = × r × w = 0 v × t r = v × t r {:[ vec(grad)xx vec(R)= vec(grad)xx vec(r)- vec(grad)xx vec(w)],[=0-[- vec(v)xx vec(grad)t_(r)]],[= vec(v)xx vec(grad)t_(r)]:}\begin{aligned} \overrightarrow{\boldsymbol{\nabla}} \times \overrightarrow{\boldsymbol{R}} & =\overrightarrow{\boldsymbol{\nabla}} \times \overrightarrow{\boldsymbol{r}}-\overrightarrow{\boldsymbol{\nabla}} \times \overrightarrow{\boldsymbol{w}} \\ & =0-\left[-\overrightarrow{\boldsymbol{v}} \times \overrightarrow{\boldsymbol{\nabla}} t_r\right]\\ & =\overrightarrow{\boldsymbol{v}} \times \overrightarrow{\boldsymbol{\nabla}} t_r \end{aligned}×R=×r×w=0[v×tr]=v×tr
Therefore,
v × ( × R ) = v × ( v × t r ) v × ( × R ) = v × v × t r vec(v)xx( vec(grad)xx vec(R))= vec(v)xx( vec(v)xx vec(grad)t_(r))\overrightarrow{\boldsymbol{v}} \times(\overrightarrow{\boldsymbol{\nabla}} \times \overrightarrow{\boldsymbol{R}})=\overrightarrow{\boldsymbol{v}} \times\left(\overrightarrow{\boldsymbol{v}} \times \overrightarrow{\boldsymbol{\nabla}} t_r\right)v×(×R)=v×(v×tr)
Then eq. (2) becomes,
( R v ) = a ( R t r ) + v v ( v t r ) R × ( a × t r ) + v × ( v × t r ) ( R v ) = a R t r + v v v t r R × a × t r + v × v × t r {:[ vec(grad)( vec(R)* vec(v))= vec(a)( vec(R)* vec(grad)t_(r))+ vec(v)- vec(v)( vec(v)* vec(grad)t_(r))],[- vec(R)xx( vec(a)xx vec(grad)t_(r))+ vec(v)xx( vec(v)xx vec(grad)t_(r))]:}\begin{aligned} \vec{\nabla}(\overrightarrow{\boldsymbol{R}} \cdot \overrightarrow{\boldsymbol{v}})= & \overrightarrow{\boldsymbol{a}}\left(\overrightarrow{\boldsymbol{R}} \cdot \overrightarrow{\boldsymbol{\nabla}} t_r\right)+\overrightarrow{\boldsymbol{v}}-\overrightarrow{\boldsymbol{v}}\left(\overrightarrow{\boldsymbol{v}} \cdot \overrightarrow{\boldsymbol{\nabla}} t_r\right) \\ & -\overrightarrow{\boldsymbol{R}} \times\left(\overrightarrow{\boldsymbol{a}} \times \overrightarrow{\boldsymbol{\nabla}} t_r\right)+\overrightarrow{\boldsymbol{v}} \times\left(\overrightarrow{\boldsymbol{v}} \times \overrightarrow{\boldsymbol{\nabla}} t_r\right) \end{aligned}(Rv)=a(Rtr)+vv(vtr)R×(a×tr)+v×(v×tr)
Using BAC-CAB rule:
A × ( B × C ) = B ( A C ) C ( A B ) R × ( a × t r ) = a ( R t r ) t r ( R a ) v × ( v × t r ) = v ( v t r ) v 2 t r A × ( B × C ) = B ( A C ) C ( A B ) R × a × t r = a R t r t r ( R a ) v × v × t r = v v t r v 2 t r {:[ vec(A)xx( vec(B)xx vec(C))= vec(B)( vec(A)* vec(C))- vec(C)( vec(A)* vec(B))],[ vec(R)xx( vec(a)xx vec(grad)t_(r))= vec(a)( vec(R)*( vec(grad))t_(r))- vec(grad)t_(r)( vec(R)* vec(a))],[ vec(v)xx( vec(v)xx vec(grad)t_(r))= vec(v)( vec(v)* vec(grad)t_(r))-v^(2) vec(grad)t_(r)]:}\begin{aligned} \overrightarrow{\boldsymbol{A}} \times(\overrightarrow{\boldsymbol{B}} \times \overrightarrow{\boldsymbol{C}}) & =\overrightarrow{\boldsymbol{B}}(\overrightarrow{\boldsymbol{A}} \cdot \overrightarrow{\boldsymbol{C}})-\overrightarrow{\boldsymbol{C}}(\overrightarrow{\boldsymbol{A}} \cdot \overrightarrow{\boldsymbol{B}}) \\ \overrightarrow{\boldsymbol{R}} \times\left(\overrightarrow{\boldsymbol{a}} \times \overrightarrow{\boldsymbol{\nabla}} t_r\right) & =\overrightarrow{\boldsymbol{a}}\left(\overrightarrow{\boldsymbol{R}} \cdot \vec{\nabla} t_r\right)-\vec{\nabla} t_r(\overrightarrow{\boldsymbol{R}} \cdot \overrightarrow{\boldsymbol{a}}) \\ \overrightarrow{\boldsymbol{v}} \times\left(\overrightarrow{\boldsymbol{v}} \times \overrightarrow{\boldsymbol{\nabla}} t_r\right) & =\overrightarrow{\boldsymbol{v}}\left(\overrightarrow{\boldsymbol{v}} \cdot \overrightarrow{\boldsymbol{\nabla}} t_r\right)-v^2 \overrightarrow{\boldsymbol{\nabla}} t_r \end{aligned}A×(B×C)=B(AC)C(AB)R×(a×tr)=a(Rtr)tr(Ra)v×(v×tr)=v(vtr)v2tr
Therefore,
( R v ) = a ( R t r ) + v v ( v t r ) a ( R t r ) + t r ( R a ) + v ( v t r ) v 2 t r ( R v ) = v + ( R a v 2 ) t r ( R v ) = a R t r + v v v t r a R t r + t r ( R a ) + v v t r v 2 t r ( R v ) = v + R a v 2 t r {:[ vec(grad)( vec(R)* vec(v))= vec(a)( vec(R)*( vec(grad))t_(r))+ vec(v)- vec(v)( vec(v)*( vec(grad))t_(r))],[- vec(a)( vec(R)*( vec(grad))t_(r))+ vec(grad)t_(r)( vec(R)* vec(a))+ vec(v)( vec(v)* vec(grad)t_(r))-v^(2) vec(grad)t_(r)],[=> vec(grad)( vec(R)* vec(v))= vec(v)+( vec(R)* vec(a)-v^(2)) vec(grad)t_(r)]:}\begin{aligned} \vec{\nabla}(\overrightarrow{\boldsymbol{R}} \cdot \overrightarrow{\boldsymbol{v}}) & =\overrightarrow{\boldsymbol{a}}\left(\overrightarrow{\boldsymbol{R}} \cdot \vec{\nabla} t_r\right)+\overrightarrow{\boldsymbol{v}}-\overrightarrow{\boldsymbol{v}}\left(\overrightarrow{\boldsymbol{v}} \cdot \vec{\nabla} t_r\right) \\ & -\overrightarrow{\boldsymbol{a}}\left(\overrightarrow{\boldsymbol{R}} \cdot \vec{\nabla} t_r\right)+\vec{\nabla} t_r(\overrightarrow{\boldsymbol{R}} \cdot \overrightarrow{\boldsymbol{a}})+\overrightarrow{\boldsymbol{v}}\left(\overrightarrow{\boldsymbol{v}} \cdot \overrightarrow{\boldsymbol{\nabla}} t_r\right)-v^2 \overrightarrow{\boldsymbol{\nabla}} t_r \\ \Rightarrow \vec{\nabla}(\overrightarrow{\boldsymbol{R}} \cdot \overrightarrow{\boldsymbol{v}}) & =\overrightarrow{\boldsymbol{v}}+\left(\overrightarrow{\boldsymbol{R}} \cdot \overrightarrow{\boldsymbol{a}}-v^2\right) \vec{\nabla} t_r \end{aligned}(Rv)=a(Rtr)+vv(vtr)a(Rtr)+tr(Ra)+v(vtr)v2tr(Rv)=v+(Rav2)tr
Hence, using above results in eq. (1):
Φ = q c 4 π ϵ 0 1 ( R c R v ) 2 [ v + ( R a v 2 ) t r + c 2 t r ] Φ = q c 4 π ϵ 0 1 ( R c R v ) 2 v + R a v 2 t r + c 2 t r {: vec(grad)Phi=(qc)/(4piepsilon_(0))(1)/((Rc- vec(R)* vec(v))^(2))[ vec(v)+( vec(R)* vec(a)-v^(2))( vec(grad))t_(r)+c^(2)( vec(grad))t_(r)]:}\begin{aligned} & \vec{\nabla} \Phi=\frac{q c}{4 \pi \epsilon_0} \frac{1}{(R c-\overrightarrow{\boldsymbol{R}} \cdot \overrightarrow{\boldsymbol{v}})^2}\left[\overrightarrow{\boldsymbol{v}}+\left(\overrightarrow{\boldsymbol{R}} \cdot \overrightarrow{\boldsymbol{a}}-v^2\right) \vec{\nabla} t_r+c^2 \vec{\nabla} t_r\right] \\ \end{aligned}Φ=qc4πϵ01(RcRv)2[v+(Rav2)tr+c2tr]
Φ = q c 4 π ϵ 0 1 ( R c R v ) 2 [ v + ( c 2 v 2 + R a ) t r ] , ( 3 ) Φ = q c 4 π ϵ 0 1 ( R c R v ) 2 v + c 2 v 2 + R a t r , 3 vec(grad)Phi=(qc)/(4piepsilon_(0))(1)/((Rc- vec(R)* vec(v))^(2))[ vec(v)+(c^(2)-v^(2)+ vec(R)* vec(a)) vec(grad)t_(r)],dots(3)\overrightarrow{\boldsymbol{\nabla}} \Phi=\frac{q c}{4 \pi \epsilon_0} \frac{1}{(R c-\overrightarrow{\boldsymbol{R}} \cdot \overrightarrow{\boldsymbol{v}})^2}\left[\overrightarrow{\boldsymbol{v}}+\left(c^2-v^2+\overrightarrow{\boldsymbol{R}} \cdot \overrightarrow{\boldsymbol{a}}\right) \overrightarrow{\boldsymbol{\nabla}} t_r\right],\ldots\left(\mathrm{3}\right)\\Φ=qc4πϵ01(RcRv)2[v+(c2v2+Ra)tr],(3)
To find t r t r vec(grad)t_(r)\vec{\nabla} t_rtr, we know:
c t r = R = R R = 1 2 R R ( R R ) = 1 R [ ( R ) R + R × ( × R ) ] c t r = R = R R = 1 2 R R ( R R ) = 1 R [ ( R ) R + R × ( × R ) ] {:[-c vec(grad)t_(r)= vec(grad)R= vec(grad)sqrt( vec(R)* vec(R))=(1)/(2sqrt( vec(R)* vec(R))) vec(grad)( vec(R)* vec(R))],[=(1)/(R)[( vec(R)* vec(grad)) vec(R)+ vec(R)xx( vec(grad)xx vec(R))]]:}\begin{aligned} -c \overrightarrow{\boldsymbol{\nabla}} t_r & =\overrightarrow{\boldsymbol{\nabla}} R=\overrightarrow{\boldsymbol{\nabla}} \sqrt{\overrightarrow{\boldsymbol{R}} \cdot \overrightarrow{\boldsymbol{R}}}=\frac{1}{2 \sqrt{\overrightarrow{\boldsymbol{R}} \cdot \overrightarrow{\boldsymbol{R}}}} \overrightarrow{\boldsymbol{\nabla}}(\overrightarrow{\boldsymbol{R}} \cdot \overrightarrow{\boldsymbol{R}}) \\ & =\frac{1}{R}[(\overrightarrow{\boldsymbol{R}} \cdot \vec{\nabla}) \overrightarrow{\boldsymbol{R}}+\overrightarrow{\boldsymbol{R}} \times(\overrightarrow{\boldsymbol{\nabla}} \times \overrightarrow{\boldsymbol{R}})] \end{aligned}ctr=R=RR=12RR(RR)=1R[(R)R+R×(×R)]
It can be shown that
( R ) R = R v ( R t r ) ( R ) R = R v R t r ( vec(R)* vec(grad)) vec(R)= vec(R)- vec(v)( vec(R)*( vec(grad))t_(r))(\overrightarrow{\boldsymbol{R}} \cdot \vec{\nabla}) \overrightarrow{\boldsymbol{R}}=\overrightarrow{\boldsymbol{R}}-\overrightarrow{\boldsymbol{v}}\left(\overrightarrow{\boldsymbol{R}} \cdot \vec{\nabla} t_r\right)(R)R=Rv(Rtr)
and × R = v × t r × R = v × t r vec(grad)xx vec(R)= vec(v)xx vec(grad)t_(r)\vec{\nabla} \times \overrightarrow{\boldsymbol{R}}=\overrightarrow{\boldsymbol{v}} \times \vec{\nabla} t_r×R=v×tr\
Therefore,
c t r = 1 R [ R v ( R t r ) + R × v × t r ] c t r = 1 R R v R t r + R × v × t r {:-c vec(grad)t_(r)=(1)/(R)[ vec(R)- vec(v)( vec(R)* vec(grad)t_(r))+ vec(R)xx vec(v)xx vec(grad)t_(r)]:}\begin{aligned} -c \overrightarrow{\boldsymbol{\nabla}} t_r & =\frac{1}{R}\left[\overrightarrow{\boldsymbol{R}}-\overrightarrow{\boldsymbol{v}}\left(\overrightarrow{\boldsymbol{R}} \cdot \overrightarrow{\boldsymbol{\nabla}} t_r\right)+\overrightarrow{\boldsymbol{R}} \times \overrightarrow{\boldsymbol{v}} \times \overrightarrow{\boldsymbol{\nabla}} t_r\right] \\ \end{aligned}ctr=1R[Rv(Rtr)+R×v×tr]
Using BAC-CAB rule:
c t r = 1 R [ R ( R v ) t r ] t r = R R c R v , ( 4 ) c t r = 1 R R ( R v ) t r t r = R R c R v , 4 {:[=>-c vec(grad)t_(r)=(1)/(R)[ vec(R)-( vec(R)* vec(v))( vec(grad))t_(r)]],[=> vec(grad)t_(r)=(- vec(R))/(Rc- vec(R)* vec(v))”,”dots(4)]:}\begin{aligned} \Rightarrow-c \overrightarrow{\boldsymbol{\nabla}} t_r & =\frac{1}{R}\left[\overrightarrow{\boldsymbol{R}}-(\overrightarrow{\boldsymbol{R}} \cdot \overrightarrow{\boldsymbol{v}}) \vec{\nabla} t_r\right] \\ \Rightarrow \overrightarrow{\boldsymbol{\nabla}} t_r & =\frac{-\overrightarrow{\boldsymbol{R}}}{R c-\overrightarrow{\boldsymbol{R}} \cdot \overrightarrow{\boldsymbol{v}}},\ldots\left(\mathrm{4}\right)\\ \end{aligned}ctr=1R[R(Rv)tr]tr=RRcRv,(4)
Inserting eq.(4) in eq.(3):
Φ = q c 4 π ϵ 0 1 ( R c R v ) 2 [ v ( c 2 v 2 + R a ) R R c R v ] Φ = q c 4 π ϵ 0 1 ( R c R v ) 3 [ ( R c R v ) v ( c 2 v 2 + R a ) R ] Φ = q c 4 π ϵ 0 1 ( R c R v ) 2 v c 2 v 2 + R a R R c R v Φ = q c 4 π ϵ 0 1 ( R c R v ) 3 ( R c R v ) v c 2 v 2 + R a R {:[ vec(grad)Phi=(qc)/(4piepsilon_(0))(1)/((Rc- vec(R)* vec(v))^(2))[ vec(v)-((c^(2)-v^(2)+ vec(R)* vec(a)) vec(R))/(Rc- vec(R)* vec(v))]],[=> vec(grad)Phi=(qc)/(4piepsilon_(0))(1)/((Rc- vec(R)* vec(v))^(3))[(Rc- vec(R)* vec(v)) vec(v)-(c^(2)-v^(2)+ vec(R)* vec(a)) vec(R)]]:}\begin{aligned} \vec{\nabla} \Phi & =\frac{q c}{4 \pi \epsilon_0} \frac{1}{(R c-\overrightarrow{\boldsymbol{R}} \cdot \overrightarrow{\boldsymbol{v}})^2}\left[\overrightarrow{\boldsymbol{v}}-\frac{\left(c^2-v^2+\overrightarrow{\boldsymbol{R}} \cdot \overrightarrow{\boldsymbol{a}}\right) \overrightarrow{\boldsymbol{R}}}{R c-\overrightarrow{\boldsymbol{R}} \cdot \overrightarrow{\boldsymbol{v}}}\right] \\ \Rightarrow \vec{\nabla} \Phi & =\frac{q c}{4 \pi \epsilon_0} \frac{1}{(R c-\overrightarrow{\boldsymbol{R}} \cdot \overrightarrow{\boldsymbol{v}})^3}\left[(R c-\overrightarrow{\boldsymbol{R}} \cdot \overrightarrow{\boldsymbol{v}}) \overrightarrow{\boldsymbol{v}}-\left(c^2-v^2+\overrightarrow{\boldsymbol{R}} \cdot \overrightarrow{\boldsymbol{a}}\right) \overrightarrow{\boldsymbol{R}}\right] \end{aligned}Φ=qc4πϵ01(RcRv)2[v(c2v2+Ra)RRcRv]Φ=qc4πϵ01(RcRv)3[(RcRv)v(c2v2+Ra)R]
Φ = q c 4 π ϵ 0 1 ( R c R v ) 3 [ ( R c R v ) v ( c 2 v 2 + R a ) R ] , ( 5 ) Φ = q c 4 π ϵ 0 1 ( R c R v ) 3 ( R c R v ) v c 2 v 2 + R a R , 5 vec(grad)Phi=(qc)/(4piepsilon_(0))(1)/((Rc- vec(R)* vec(v))^(3))[(Rc- vec(R)* vec(v)) vec(v)-(c^(2)-v^(2)+ vec(R)* vec(a)) vec(R)],dots(5)\overrightarrow{\boldsymbol{\nabla}} \Phi=\frac{q c}{4 \pi \epsilon_0} \frac{1}{(R c-\overrightarrow{\boldsymbol{R}} \cdot \overrightarrow{\boldsymbol{v}})^3}\left[(R c-\overrightarrow{\boldsymbol{R}} \cdot \overrightarrow{\boldsymbol{v}}) \overrightarrow{\boldsymbol{v}}-\left(c^2-v^2+\overrightarrow{\boldsymbol{R}} \cdot \overrightarrow{\boldsymbol{a}}\right) \overrightarrow{\boldsymbol{R}}\right],\ldots\left(\mathrm{5}\right)\\Φ=qc4πϵ01(RcRv)3[(RcRv)v(c2v2+Ra)R],(5)
From the Liénard-Wiechert potential
A ( r , t ) = v c 2 Φ ( r , t ) A ( r , t ) = v c 2 Φ ( r , t ) vec(A)( vec(r),t)=( vec(v))/(c^(2))Phi( vec(r),t)\overrightarrow{\boldsymbol{A}}(\overrightarrow{\boldsymbol{r}}, t)=\frac{\overrightarrow{\boldsymbol{v}}}{c^2} \Phi(\overrightarrow{\boldsymbol{r}}, t)A(r,t)=vc2Φ(r,t)
and
Φ ( r , t ) = 1 4 π ϵ 0 q c ( R c R v ) Φ ( r , t ) = 1 4 π ϵ 0 q c ( R c R v ) Phi( vec(r),t)=(1)/(4piepsilon_(0))(qc)/((Rc- vec(R)* vec(v)))\Phi(\overrightarrow{\boldsymbol{r}}, t)=\frac{1}{4 \pi \epsilon_0} \frac{q c}{(R c-\overrightarrow{\boldsymbol{R}} \cdot \overrightarrow{\boldsymbol{v}})}Φ(r,t)=14πϵ0qc(RcRv)
Hence,
A ( r , t ) = 1 4 π ϵ 0 c q v ( R c R v ) A ( r , t ) = 1 4 π ϵ 0 c q v ( R c R v ) vec(A)( vec(r),t)=(1)/(4piepsilon_(0)c)(q vec(v))/((Rc- vec(R)* vec(v)))\overrightarrow{\boldsymbol{A}}(\overrightarrow{\boldsymbol{r}}, t)= \frac{1}{4 \pi \epsilon_0 c} \frac{q \overrightarrow{\boldsymbol{v}}}{(R c-\overrightarrow{\boldsymbol{R}} \cdot \overrightarrow{\boldsymbol{v}})}A(r,t)=14πϵ0cqv(RcRv)
Therefore,
A t = q 4 π ϵ 0 c [ v t ( 1 R c R v ) + v t ( 1 R c R v ) ] , ( 6 ) A t = q 4 π ϵ 0 c v t 1 R c R v + v t 1 R c R v , 6 {:(del vec(A))/(del t)=(q)/(4piepsilon_(0)c)[(del vec(v))/(del t)((1)/(Rc- vec(R)* vec(v)))+ vec(v)(del)/(del t)((1)/(Rc- vec(R)* vec(v)))]”,”dots(6):}\begin{aligned} \frac{\partial \overrightarrow{\boldsymbol{A}}}{\partial t}= \frac{q}{4 \pi \epsilon_0 c}\left[\frac{\partial\overrightarrow{{\boldsymbol{v}}}}{\partial t}\left(\frac{1}{Rc-\overrightarrow{\boldsymbol{R}} \cdot \overrightarrow{\boldsymbol{v}}}\right)+\overrightarrow{\boldsymbol{v}}\frac{\partial}{\partial t}\left(\frac{1}{Rc-\overrightarrow{\boldsymbol{R}} \cdot \overrightarrow{\boldsymbol{v}}}\right)\right], \ldots\left(\mathrm{6}\right)\\ \end{aligned}At=q4πϵ0c[vt(1RcRv)+vt(1RcRv)],(6)
Now, solving for 1st term in eq. (6),\
v t = d v ( t r ) d t r t r t = a ( t r ) t r t , ( 7 ) v t = d v t r d t r t r t = a ( t r ) t r t , 7 {:(del vec(v))/(del t)=(d(v(t_(r))))/(dt_(r))(delt_(r))/(del t)= vec(a)(t_(r))(delt_(r))/(del t)”,”dots(7):}\begin{aligned} \frac{\partial\overrightarrow{{\boldsymbol{v}}}}{\partial t}=\frac{d{\boldsymbol{v}\left(t_r\right)}}{dt_r}\frac{\partial t_r}{\partial t}=\overrightarrow{\boldsymbol{a}}(t_r)\frac{\partial t_r}{\partial t},\ldots\left(\mathrm{7}\right)\\ \end{aligned}vt=dv(tr)dtrtrt=a(tr)trt,(7)
Calculation of t r t t r t (delt_(r))/(del t)\mathbf{\frac{\partial t_r}{\partial t}}trt:\
Since,\
R = c ( t t r ) = c Δ t r , R = r w ( t r ) R R = c 2 ( t t r ) 2 t c 2 ( t t r ) 2 = t ( R R ) c . c ( t t r ) . ( 1 t r t ) = R t [ r w ( t r ) ] c R ( 1 t r t ) = R [ t r t w ( t r ) ] R = c ( t t r ) = c Δ t r , R = r w ( t r ) R R = c 2 ( t t r ) 2 t c 2 ( t t r ) 2 = t R R c . c ( t t r ) . ( 1 t r t ) = R t [ r w ( t r ) ] c R ( 1 t r t ) = R [ t r t w ( t r ) ] {:[R=c(t-t_(r))=c Deltat_(r)”,” vec(R)= vec(r)- vec(w)(t_(r))],[=> vec(R)* vec(R)=c^(2)(t-t_(r))^(2)],[=>(del)/(del t)c^(2)(t-t_(r))^(2)=(del)/(del t)( vec(R)* vec(R))],[=>c.c(t-t_(r)).(1-(delt_(r))/(del t))= vec(R)(del)/(del t)[ vec(r)- vec(w)(t_(r))]],[=>cR(1-(delt_(r))/(del t))= vec(R)[(del)/(del t) vec(r)-(del)/(del t) vec(w)(t_(r))]]:}\begin{gathered} R=c(t-t_r)= c \Delta t_r, \overrightarrow{\boldsymbol{R}}= \overrightarrow{\boldsymbol{r}}- \overrightarrow{\boldsymbol{w}}(t_r)\\ \Rightarrow\overrightarrow{\boldsymbol{R}} \cdot\overrightarrow{\boldsymbol{R}} = c^2 (t- t_r)^2\\ \Rightarrow\frac{\partial}{\partial t} c^2 (t-t_r)^2= \frac{\partial}{\partial t}\left(\overrightarrow{\boldsymbol{R}} \cdot\overrightarrow{\boldsymbol{R}}\right)\\ \Rightarrow c.c (t-t_r).(1-\frac{\partial t_r}{\partial t})= \overrightarrow{\boldsymbol{R}} \frac{\partial}{\partial t}[\overrightarrow{\boldsymbol{r}}-\overrightarrow{\boldsymbol{w}}(t_r)]\\ \Rightarrow c R (1-\frac{\partial t_r}{\partial t}) = \overrightarrow{\boldsymbol{R}} [\frac{\partial}{\partial t}\overrightarrow{\boldsymbol{r}}-\frac{\partial}{\partial t}\overrightarrow{\boldsymbol{w}}(t_r)]\\ \end{gathered}R=c(ttr)=cΔtr,R=rw(tr)RR=c2(ttr)2tc2(ttr)2=t(RR)c.c(ttr).(1trt)=Rt[rw(tr)]cR(1trt)=R[trtw(tr)]
Since,
t r = 0 , w ( t r ) t = w ( t r ) t r t r t = v ( t r ) t r t t r = 0 , w ( t r ) t = w ( t r ) t r t r t = v ( t r ) t r t {:(del)/(del t) vec(r)=0″,”(del vec(w)(t_(r)))/(del t)=(del vec(w)(t_(r)))/(delt_(r))(delt_(r))/(del t)= vec(v)(t_(r))(delt_(r))/(del t):}\begin{aligned} \frac{\partial}{\partial t}\overrightarrow{\boldsymbol{r}}=0,\frac{\partial \overrightarrow{\boldsymbol{w}}(t_r)}{\partial t}= \frac{\partial\overrightarrow{\boldsymbol{w}}(t_r)}{\partial t_r} \frac{\partial t_r}{\partial t}= \overrightarrow{\boldsymbol{v}}(t_r) \frac{\partial t_r}{\partial t}\\ \end{aligned}tr=0,w(tr)t=w(tr)trtrt=v(tr)trt
Hence,
R t = v ( t r ) t r t , R t = c ( 1 t r t ) ( 8 ) R t = v ( t r ) t r t , R t = c 1 t r t 8 {:(del vec(R))/(del t)=- vec(v)(t_(r))(delt_(r))/(del t)”,”(del R)/(del t)=c(1-(delt_(r))/(del t))dots(8):}\begin{aligned} \frac{\partial \overrightarrow{\boldsymbol{R}}}{\partial t} = -\overrightarrow{\boldsymbol{v}}(t_r) \frac{\partial t_r}{\partial t}, \frac{\partial R}{\partial t} = c\left(1- \frac{\partial t_r}{\partial t}\right)\ldots\left(\mathrm{8}\right)\\ \end{aligned}Rt=v(tr)trt,Rt=c(1trt)(8)
Therefore,
c R ( 1 t r t ) = R v ( t r ) t r t c R ( 1 t r t ) = R v ( t r ) t r t {:cR(1-(delt_(r))/(del t))=- vec(R)* vec(v)(t_(r))(delt_(r))/(del t):}\begin{aligned} c R (1-\frac{\partial t_r}{\partial t}) = -\overrightarrow{\boldsymbol{R}} \cdot\overrightarrow{\boldsymbol{v}}(t_r) \frac{\partial t_r}{\partial t}\\ \end{aligned}cR(1trt)=Rv(tr)trt
Rearranging the terms, we get,
t r t = R c R c R v ( t r ) , ( 9 ) t r t = R c R c R v ( t r ) , 9 {:(delt_(r))/(del t)=(Rc)/(Rc- vec(R)* vec(v)(t_(r)))”,”dots(9):}\begin{aligned} \frac{\partial t_r}{\partial t}= \frac{Rc}{Rc-\overrightarrow{\boldsymbol{R}} \cdot\overrightarrow{\boldsymbol{v}}(t_r)},\ldots\left(\mathrm{9}\right)\\ \end{aligned}trt=RcRcRv(tr),(9)
Using eq. (9) in eq. (7), we get;
v t = a ( t r ) R c R c R v ( t r ) , ( 10 ) v t = a ( t r ) R c R c R v ( t r ) , 10 {:(del vec(v))/(del t)=( vec(a)(t_(r))Rc)/(Rc- vec(R)* vec(v)(t_(r)))”,”dots(10):}\begin{aligned} \frac{\partial\overrightarrow{{\boldsymbol{v}}}}{\partial t}=\frac{\overrightarrow{\boldsymbol{a}}(t_r) Rc}{Rc-\overrightarrow{\boldsymbol{R}} \cdot\overrightarrow{\boldsymbol{v}}(t_r)},\ldots\left(\mathrm{10}\right)\\ \end{aligned}vt=a(tr)RcRcRv(tr),(10)
Now, solving for 2nd term in eq. (6),\
t [ 1 R c R v ( t r ) ] = 1 [ R c R v ] 2 t [ R c R v ] = 1 [ R c R v ] 2 [ c R t R v t v R t ] , ( 11 ) t 1 R c R v ( t r ) = 1 [ R c R v ] 2 t [ R c R v ] = 1 [ R c R v ] 2 c R t R v t v R t , 11 {:[(del)/(del t)[(1)/(Rc- vec(R)* vec(v)(t_(r)))]=(-1)/([Rc- vec(R)* vec(v)]^(2))(del)/(del t)[Rc- vec(R)* vec(v)]],[=(-1)/([Rc- vec(R)* vec(v)]^(2))[c(del R)/(del t)- vec(R)*(del vec(v))/(del t)- vec(v)*(del vec(R))/(del t)]”,”dots(11)]:}\begin{aligned} \frac{\partial}{\partial t}\left[\frac{1}{Rc-\overrightarrow{\boldsymbol{R}} \cdot\overrightarrow{\boldsymbol{v}}(t_r)}\right] = \frac{-1}{[Rc-\overrightarrow{\boldsymbol{R}} \cdot\overrightarrow{\boldsymbol{v}}]^2} \frac{\partial}{\partial t} [Rc-\overrightarrow{\boldsymbol{R}} \cdot\overrightarrow{\boldsymbol{v}}]\\ = \frac{-1}{[Rc-\overrightarrow{\boldsymbol{R}} \cdot\overrightarrow{\boldsymbol{v}}]^2} \left[c\frac{\partial R}{\partial t} – \overrightarrow{\boldsymbol{R}} \cdot \frac{\partial \overrightarrow{\boldsymbol{v}}}{\partial t}-\overrightarrow{\boldsymbol{v}} \cdot \frac{\partial \overrightarrow{\boldsymbol{R}}}{\partial t}\right] ,\ldots\left(\mathrm{11}\right)\\ \end{aligned}t[1RcRv(tr)]=1[RcRv]2t[RcRv]=1[RcRv]2[cRtRvtvRt],(11)
Solving each term in eq. (11) using eq. (8-10);
c R t = c 2 ( 1 t r t ) = c 2 [ R v R c R v ] R v t = R a ( t r ) R c R c R v v R t = v 2 t r t = v 2 R c R c R v c R t = c 2 1 t r t = c 2 R v R c R v R v t = R a ( t r ) R c R c R v v R t = v 2 t r t = v 2 R c R c R v {:[c(del R)/(del t)=c^(2)(1-(delt_(r))/(del t))=c^(2)[(- vec(R)* vec(v))/(Rc- vec(R)* vec(v))]],[ vec(R)*(del vec(v))/(del t)=( vec(R)* vec(a)(t_(r))Rc)/(Rc- vec(R)* vec(v))],[ vec(v)*(del vec(R))/(del t)=-v^(2)(delt_(r))/(del t)=(-v^(2)Rc)/(Rc- vec(R)* vec(v))]:}\begin{gathered} c\frac{\partial R}{\partial t}= c^2\left(1- \frac{\partial t_r}{\partial t}\right) = c^2 \left[\frac{-\overrightarrow{\boldsymbol{R}} \cdot\overrightarrow{\boldsymbol{v}}}{Rc-\overrightarrow{\boldsymbol{R}} \cdot\overrightarrow{\boldsymbol{v}}}\right]\\ \overrightarrow{\boldsymbol{R}} \cdot \frac{\partial \overrightarrow{\boldsymbol{v}}}{\partial t}= \frac{\overrightarrow{\boldsymbol{R}} \cdot\overrightarrow{\boldsymbol{a}}(t_r) Rc}{Rc-\overrightarrow{\boldsymbol{R}} \cdot\overrightarrow{\boldsymbol{v}}}\\ \overrightarrow{\boldsymbol{v}} \cdot \frac{\partial \overrightarrow{\boldsymbol{R}}}{\partial t}= -v^2 \frac{\partial t_r}{\partial t}= \frac{-v^2Rc}{Rc-\overrightarrow{\boldsymbol{R}} \cdot\overrightarrow{\boldsymbol{v}}} \\ \end{gathered}cRt=c2(1trt)=c2[RvRcRv]Rvt=Ra(tr)RcRcRvvRt=v2trt=v2RcRcRv
Using the above calculated terms in eq. (11) and using eq. (10) and eq. (11) in eq. (6) we get:\
A t = q 4 π ϵ 0 c [ R c a ( R c R v ) 2 v ( R c R v ) 2 ( c 2 R c 3 R c R v R a R c R c R v + R c v 2 R c R v ) ] , A t = q 4 π ϵ 0 c 1 ( R c R v ) 3 [ R c a ( R c R v ) v c 2 ( R c R v ) + R c 3 v + R a R c v 2 R c v ] A t = q c 4 π ϵ 0 1 ( R c R v ) 3 [ ( R c R v ) ( R c a v ) + ( c 2 v 2 + R a ) R c v ] , ( 12 ) A t = q 4 π ϵ 0 c R c a R c R v 2 v R c R v 2 c 2 R c 3 R c R v R a R c R c R v + R c v 2 R c R v , A t = q 4 π ϵ 0 c 1 R c R v 3 R c a ( R c R v ) v c 2 ( R c R v ) + R c 3 v + R a R c v 2 R c v A t = q c 4 π ϵ 0 1 R c R v 3 ( R c R v ) ( R c a v ) + ( c 2 v 2 + R a ) R c v , 12 {:[(del vec(A))/(del t)=(q)/(4piepsilon_(0)c)[(Rc vec(a))/((Rc- vec(R)* vec(v))^(2))-( vec(v))/((Rc- vec(R)* vec(v))^(2))(c^(2)-(Rc^(3))/(Rc- vec(R)* vec(v))-( vec(R)* vec(a)Rc)/(Rc- vec(R)* vec(v))+(Rcv^(2))/(Rc- vec(R)* vec(v)))]”,”],[=>(del vec(A))/(del t)=(q)/(4piepsilon_(0)c)(1)/((Rc- vec(R)* vec(v))^(3))[Rc vec(a)(Rc- vec(R)* vec(v))- vec(v)c^(2)(Rc- vec(R)* vec(v))+Rc^(3) vec(v)+ vec(R)* vec(a)Rc-v^(2)Rc vec(v)]],[=>(del vec(A))/(del t)=(qc)/(4piepsilon_(0))(1)/((Rc- vec(R)* vec(v))^(3))[(Rc- vec(R)* vec(v))((R)/(c) vec(a)- vec(v))+(c^(2)-v^(2)+ vec(R)* vec(a))(R)/(c) vec(v)]”,”dots(12)],[]:}\begin{aligned} &\frac{\partial \overrightarrow{\boldsymbol{A}}}{\partial t}= \frac{q}{4 \pi \epsilon_0 c}\left[\frac{Rc\overrightarrow{\boldsymbol{a}}}{\left(Rc-\overrightarrow{\boldsymbol{R}} \cdot \overrightarrow{\boldsymbol{v}}\right)^2}-\frac{\overrightarrow{\boldsymbol{v}}}{\left(Rc-\overrightarrow{\boldsymbol{R}} \cdot \overrightarrow{\boldsymbol{v}}\right)^2}\left(c^2- \frac{Rc^3}{Rc-\overrightarrow{\boldsymbol{R}} \cdot \overrightarrow{\boldsymbol{v}}}-\frac{\overrightarrow{\boldsymbol{R}}\cdot\overrightarrow{\boldsymbol{a}}Rc}{Rc-\overrightarrow{\boldsymbol{R}} \cdot \overrightarrow{\boldsymbol{v}}}+\frac{Rcv^2}{Rc-\overrightarrow{\boldsymbol{R}} \cdot \overrightarrow{\boldsymbol{v}}}\right)\right],& \\ &\Rightarrow\frac{\partial \overrightarrow{\boldsymbol{A}}}{\partial t}=\frac{q}{4 \pi \epsilon_0 c}\frac{1}{\left(Rc-\overrightarrow{\boldsymbol{R}} \cdot \overrightarrow{\boldsymbol{v}}\right)^3}\left[Rc\overrightarrow{\boldsymbol{a}}(Rc-\overrightarrow{\boldsymbol{R}}\cdot\overrightarrow{\boldsymbol{v}})-\overrightarrow{\boldsymbol{v}}c^2(Rc-\overrightarrow{\boldsymbol{R}}\cdot\overrightarrow{\boldsymbol{v}})+Rc^3\overrightarrow{\boldsymbol{v}}+\overrightarrow{\boldsymbol{R}}\cdot\overrightarrow{\boldsymbol{a}}Rc-v^2Rc\overrightarrow{\boldsymbol{v}}\right]&\\ &\Rightarrow\frac{\partial \overrightarrow{\boldsymbol{A}}}{\partial t}=\frac{qc}{4 \pi \epsilon_0}\frac{1}{\left(Rc-\overrightarrow{\boldsymbol{R}} \cdot \overrightarrow{\boldsymbol{v}}\right)^3}\left[(Rc-\overrightarrow{\boldsymbol{R}}\cdot\overrightarrow{\boldsymbol{v}})(\frac{R}{c}\overrightarrow{\boldsymbol{a}}-\overrightarrow{\boldsymbol{v}})+(c^2-v^2+\overrightarrow{\boldsymbol{R}}\cdot\overrightarrow{\boldsymbol{a}})\frac{R}{c}\overrightarrow{\boldsymbol{v}}\right], \ldots\left(\mathrm{12}\right)\\&\\ \end{aligned}At=q4πϵ0c[Rca(RcRv)2v(RcRv)2(c2Rc3RcRvRaRcRcRv+Rcv2RcRv)],At=q4πϵ0c1(RcRv)3[Rca(RcRv)vc2(RcRv)+Rc3v+RaRcv2Rcv]At=qc4πϵ01(RcRv)3[(RcRv)(Rcav)+(c2v2+Ra)Rcv],(12)
Now introduce a new vector given as:
u c R ^ v u c R ^ v vec(u)-=c hat(R)- vec(v)\overrightarrow{\boldsymbol{u}} \equiv c \hat{\boldsymbol{R}}-\overrightarrow{\boldsymbol{v}}ucR^v
Then, eq. (5) and eq. (12) may be combined to obtain the electric field as;
E ( r , t ) = q 4 π ϵ 0 R ( R u ) 3 [ ( c 2 v 2 ) u + R × ( u × a ) ] , ( 13 ) E ( r , t ) = q 4 π ϵ 0 R ( R u ) 3 c 2 v 2 u + R × ( u × a ) , 13 {:=> vec(E)( vec(r)”,”t)=(q)/(4piepsilon_(0))(R)/(( vec(R)* vec(u))^(3))[(c^(2)-v^(2)) vec(u)+ vec(R)xx( vec(u)xx vec(a))]”,”dots(13):}\begin{aligned} \Rightarrow \overrightarrow{\boldsymbol{E}}(\overrightarrow{\boldsymbol{r}}, t) & =\frac{q}{4 \pi \epsilon_0} \frac{R}{(\overrightarrow{\boldsymbol{R}} \cdot \overrightarrow{\boldsymbol{u}})^3}\left[\left(c^2-v^2\right) \overrightarrow{\boldsymbol{u}}+\overrightarrow{\boldsymbol{R}} \times(\overrightarrow{\boldsymbol{u}} \times \overrightarrow{\boldsymbol{a}})\right], \ldots\left(\mathrm{13}\right)\\ \end{aligned}E(r,t)=q4πϵ0R(Ru)3[(c2v2)u+R×(u×a)],(13)
Calculation of B B vec(B)\mathbf{\vec{B}}B :
B = × A A = v c 2 Φ B = × A A = v c 2 Φ {:[ vec(B)= vec(grad)xx vec(A)],[ vec(A)=(( vec(v)))/(c^(2))Phi]:}\begin{aligned} & \overrightarrow{\boldsymbol{B}}=\vec{\nabla} \times \vec{A} \\ & \overrightarrow{\boldsymbol{A}}=\frac{\vec{v}}{c^2} \Phi \end{aligned}B=×AA=vc2Φ
Therefore, we have,
× A = 1 c 2 × ( Φ v ) = 1 c 2 [ Φ ( × v ) v × ( Φ ) ] × A = 1 c 2 × ( Φ v ) = 1 c 2 [ Φ ( × v ) v × ( Φ ) ] {:[ vec(grad)xx vec(A)=(1)/(c^(2)) vec(grad)xx(Phi vec(v))],[=(1)/(c^(2))[Phi( vec(grad)xx vec(v))- vec(v)xx( vec(grad)Phi)]]:}\begin{aligned} \overrightarrow{\boldsymbol{\nabla}} \times \overrightarrow{\boldsymbol{A}} & =\frac{1}{c^2} \overrightarrow{\boldsymbol{\nabla}} \times(\Phi \overrightarrow{\boldsymbol{v}}) \\ & =\frac{1}{c^2}[\Phi(\overrightarrow{\boldsymbol{\nabla}} \times \overrightarrow{\boldsymbol{v}})-\overrightarrow{\boldsymbol{v}} \times(\overrightarrow{\boldsymbol{\nabla}} \Phi)] \end{aligned}×A=1c2×(Φv)=1c2[Φ(×v)v×(Φ)]
We have already obtained Φ , Φ Φ , Φ Phi, vec(grad)Phi\Phi, \vec{\nabla} \PhiΦ,Φ and × v = a × t r × v = a × t r vec(grad)xx vec(v)=- vec(a)xx vec(grad)t_(r)\vec{\nabla} \times \overrightarrow{\boldsymbol{v}}=-\overrightarrow{\boldsymbol{a}} \times \vec{\nabla} t_r×v=a×tr. Inserting these and with u u vec(u)\vec{u}u, we get
B ( r , t ) = × A = 1 c q 4 π ϵ 0 1 ( u R ) 3 R × [ ( c 2 v 2 ) v + ( R a ) v + ( R u ) a ] , ( 14 ) B ( r , t ) = × A = 1 c q 4 π ϵ 0 1 ( u R ) 3 R × c 2 v 2 v + ( R a ) v + ( R u ) a , 14 vec(B)( vec(r),t)= vec(grad)xx vec(A)=-(1)/(c)(q)/(4piepsilon_(0))(1)/(( vec(u)* vec(R))^(3)) vec(R)xx[(c^(2)-v^(2)) vec(v)+( vec(R)* vec(a)) vec(v)+( vec(R)* vec(u)) vec(a)],dots(14)\overrightarrow{\boldsymbol{B}}(\overrightarrow{\boldsymbol{r}}, t) =\overrightarrow{\boldsymbol{\nabla}} \times \overrightarrow{\boldsymbol{A}} = -\frac{1}{c} \frac{q}{4 \pi \epsilon_0} \frac{1}{(\overrightarrow{\boldsymbol{u}} \cdot \overrightarrow{\boldsymbol{R}})^3} \overrightarrow{\boldsymbol{R}} \times\left[\left(c^2- v^2\right) \overrightarrow{\boldsymbol{v}}+(\overrightarrow{\boldsymbol{R}} \cdot \overrightarrow{\boldsymbol{a}}) \overrightarrow{\boldsymbol{v}}+(\overrightarrow{\boldsymbol{R}} \cdot \overrightarrow{\boldsymbol{u}}) \overrightarrow{\boldsymbol{a}}\right] ,\ldots\left(\mathrm{14}\right)\\B(r,t)=×A=1cq4πϵ01(uR)3R×[(c2v2)v+(Ra)v+(Ru)a],(14)
E ( r , t ) = q 4 π ϵ 0 R ( R u ) 3 [ ( c 2 v 2 ) u + R × ( u × a ) ] , ( 13 ) E ( r , t ) = q 4 π ϵ 0 R ( R u ) 3 c 2 v 2 u + R × ( u × a ) , 13 {: vec(E)( vec(r)”,”t)=(q)/(4piepsilon_(0))(R)/(( vec(R)* vec(u))^(3))[(c^(2)-v^(2)) vec(u)+ vec(R)xx( vec(u)xx vec(a))]”,”dots(13):}\begin{aligned} \overrightarrow{\boldsymbol{E}}(\overrightarrow{\boldsymbol{r}}, t) & =\frac{q}{4 \pi \epsilon_0} \frac{R}{(\overrightarrow{\boldsymbol{R}} \cdot \overrightarrow{\boldsymbol{u}})^3}\left[\left(c^2-v^2\right) \overrightarrow{\boldsymbol{u}}+\overrightarrow{\boldsymbol{R}} \times(\overrightarrow{\boldsymbol{u}} \times \overrightarrow{\boldsymbol{a}})\right], \ldots\left(\mathrm{13}\right)\\ \end{aligned}E(r,t)=q4πϵ0R(Ru)3[(c2v2)u+R×(u×a)],(13)
From the above, it can be shown that
B ( r , t ) = 1 c R ^ × E ( r , t ) B ( r , t ) = 1 c R ^ × E ( r , t ) vec(B)( vec(r),t)=(1)/(c) hat(R)xx vec(E)( vec(r),t)\overrightarrow{\boldsymbol{B}}(\overrightarrow{\boldsymbol{r}}, t)=\frac{1}{c} \hat{\boldsymbol{R}} \times \overrightarrow{\boldsymbol{E}}(\overrightarrow{\boldsymbol{r}}, t)B(r,t)=1cR^×E(r,t)
Therefore, the ( E , B ) ( E , B ) ( vec(E), vec(B))(\overrightarrow{\boldsymbol{E}}, \overrightarrow{\boldsymbol{B}})(E,B) due to an accelerated point charge are:
E ( r , t ) = q 4 π ϵ 0 R ( R u ) 3 [ ( c 2 v 2 ) u + R × ( u × a ) ] B ( r , t ) = 1 c R ^ × E ( r , t ) E ( r , t ) = q 4 π ϵ 0 R ( R u ) 3 c 2 v 2 u + R × ( u × a ) B ( r , t ) = 1 c R ^ × E ( r , t ) {:[ vec(E)( vec(r)”,”t)=(q)/(4piepsilon_(0))(R)/(( vec(R)* vec(u))^(3))[(c^(2)-v^(2)) vec(u)+ vec(R)xx( vec(u)xx vec(a))]],[ vec(B)( vec(r)”,”t)=(1)/(c) hat(R)xx vec(E)( vec(r)”,”t)]:}\begin{gathered} \overrightarrow{\boldsymbol{E}}(\overrightarrow{\boldsymbol{r}}, t)=\frac{q}{4 \pi \epsilon_0} \frac{R}{(\overrightarrow{\boldsymbol{R}} \cdot \overrightarrow{\boldsymbol{u}})^3}\left[\left(c^2-v^2\right) \overrightarrow{\boldsymbol{u}}+\overrightarrow{\boldsymbol{R}} \times(\overrightarrow{\boldsymbol{u}} \times \overrightarrow{\boldsymbol{a}})\right] \\ \overrightarrow{\boldsymbol{B}}(\overrightarrow{\boldsymbol{r}}, t)=\frac{1}{c} \hat{\boldsymbol{R}} \times \overrightarrow{\boldsymbol{E}}(\overrightarrow{\boldsymbol{r}}, t) \\ \end{gathered}E(r,t)=q4πϵ0R(Ru)3[(c2v2)u+R×(u×a)]B(r,t)=1cR^×E(r,t)
Observations:
  • B B vec(B)\overrightarrow{\boldsymbol{B}}B due to a point charge is always perpendicular to E E vec(E)\overrightarrow{\boldsymbol{E}}E\
  • 1st term in eq.(7) varies as 1 / R 2 1 / R 2 1//R^(2)1 / R^21/R2 : Velocity field or generalized Coulomb field. If v = 0 v = 0 vec(v)=0\overrightarrow{\boldsymbol{v}}=0v=0 and a = 0 a = 0 vec(a)=0\overrightarrow{\boldsymbol{a}}=0a=0, then E E vec(E)\overrightarrow{\boldsymbol{E}}E reduces to
E = 1 4 π ϵ 0 q R 2 R ^ E = 1 4 π ϵ 0 q R 2 R ^ vec(E)=(1)/(4piepsilon_(0))(q)/(R^(2)) hat(R)\overrightarrow{\boldsymbol{E}}=\frac{1}{4 \pi \epsilon_0} \frac{q}{R^2} \hat{\boldsymbol{R}}E=14πϵ0qR2R^
  • 2nd term in eq.(7) varies as 1 / R 1 / R 1//R1 / R1/R : Acceleration field or Radiation field
Scroll to Top