The Liénard-Wiechert potentials are given as:
Φ
(
r
→
,
t
)
=
1
4
Ï€
ϵ
0
q
c
(
R
c
−
R
→
â‹…
v
→
)
A
→
(
r
→
,
t
)
=
v
→
c
2
Φ
(
r
→
,
t
)
Φ
(
r
→
,
t
)
=
1
4
Ï€
ϵ
0
q
c
(
R
c
−
R
→
â‹…
v
→
)
A
→
(
r
→
,
t
)
=
v
→
c
2
Φ
(
r
→
,
t
)
{:[Phi( vec(r)”,”t)=(1)/(4piepsilon_(0))(qc)/((Rc-( vec(R))*( vec(v))))],[ vec(A)( vec(r)”,”t)=(( vec(v)))/(c^(2))Phi( vec(r)”,”t)]:} \begin{aligned}
& \Phi(\vec{r}, t)=\frac{1}{4 \pi \epsilon_0} \frac{q c}{(R c-\vec{R} \cdot \vec{v})} \\
& \vec{A}(\vec{r}, t)=\frac{\vec{v}}{c^2} \Phi(\vec{r}, t)
\end{aligned} Φ ( r → , t ) = 1 4 π ϵ 0 q c ( R c − R → ⋅ v → ) A → ( r → , t ) = v → c 2 Φ ( r → , t )
These equations can now be used to calculate the
(
E
→
,
B
→
)
(
E
→
,
B
→
)
( vec(E), vec(B)) (\mathbf{\vec{E}, \vec{B}}) ( E → , B → ) due to a point charge in accelerated motion, using the equations:
E
→
=
−
∇
→
Φ
−
∂
A
→
∂
t
B
→
=
∇
→
×
A
→
E
→
=
−
∇
→
Φ
−
∂
A
→
∂
t
B
→
=
∇
→
×
A
→
{:[ vec(E)=- vec(grad)Phi-(del( vec(A)))/(del t)],[ vec(B)= vec(grad)xx vec(A)]:} \begin{aligned}
& \vec{E}=-\vec{\nabla} \Phi-\frac{\partial \vec{A}}{\partial t} \\
& \vec{B}=\vec{\nabla} \times \vec{A}
\end{aligned} E → = − ∇ → Φ − ∂ A → ∂ t B → = ∇ → × A →
Calculation of
E
→
E
→
vec(E) \mathbf{\vec{E}} E → :
E
→
=
−
∇
→
Φ
−
∂
A
→
∂
t
E
→
=
−
∇
→
Φ
−
∂
A
→
∂
t
{: vec(E)=- vec(grad)Phi-(del( vec(A)))/(del t):} \begin{aligned}
\vec{E}=-\vec{\nabla} \Phi-\frac{\partial \vec{A}}{\partial t} \\
\end{aligned} E → = − ∇ → Φ − ∂ A → ∂ t
Here,
∇
→
Φ
=
q
c
4
Ï€
ϵ
0
∇
→
[
(
R
c
−
R
→
â‹…
v
→
)
−
1
]
=
q
c
4
Ï€
ϵ
0
(
−
1
)
(
R
c
−
R
→
â‹…
v
→
)
2
∇
→
(
R
c
−
R
→
â‹…
v
→
)
⇒
∇
→
Φ
=
q
c
4
Ï€
ϵ
0
1
(
R
c
−
R
→
â‹…
v
→
)
2
[
∇
→
(
R
→
â‹…
v
→
)
−
c
∇
→
R
]
∇
→
Φ
=
q
c
4
Ï€
ϵ
0
∇
→
(
R
c
−
R
→
â‹…
v
→
)
−
1
=
q
c
4
Ï€
ϵ
0
(
−
1
)
(
R
c
−
R
→
â‹…
v
→
)
2
∇
→
(
R
c
−
R
→
â‹…
v
→
)
⇒
∇
→
Φ
=
q
c
4
Ï€
ϵ
0
1
(
R
c
−
R
→
â‹…
v
→
)
2
[
∇
→
(
R
→
â‹…
v
→
)
−
c
∇
→
R
]
{:[ vec(grad)Phi=(qc)/(4piepsilon_(0)) vec(grad)[(Rc-( vec(R))*( vec(v)))^(-1)]],[=(qc)/(4piepsilon_(0))((-1))/((Rc-( vec(R))*( vec(v)))^(2)) vec(grad)(Rc- vec(R)* vec(v))],[=> vec(grad)Phi=(qc)/(4piepsilon_(0))(1)/((Rc-( vec(R))*( vec(v)))^(2))[ vec(grad)( vec(R)* vec(v))-c vec(grad)R]]:} \begin{aligned}
\vec{\nabla} \Phi & =\frac{q c}{4 \pi \epsilon_0} \vec{\nabla}\left[(R c-\vec{R} \cdot \vec{v})^{-1}\right] \\
& =\frac{q c}{4 \pi \epsilon_0} \frac{(-1)}{(R c-\vec{R} \cdot \vec{v})^2} \vec{\nabla}(R c-\vec{R} \cdot \vec{v}) \\
\Rightarrow \vec{\nabla} \Phi & =\frac{q c}{4 \pi \epsilon_0} \frac{1}{(R c-\vec{R} \cdot \vec{v})^2}[\vec{\nabla}(\vec{R} \cdot \vec{v})-c \vec{\nabla} R]
\end{aligned} ∇ → Φ = q c 4 π ϵ 0 ∇ → [ ( R c − R → ⋅ v → ) − 1 ] = q c 4 π ϵ 0 ( − 1 ) ( R c − R → ⋅ v → ) 2 ∇ → ( R c − R → ⋅ v → ) ⇒ ∇ → Φ = q c 4 π ϵ 0 1 ( R c − R → ⋅ v → ) 2 [ ∇ → ( R → ⋅ v → ) − c ∇ → R ]
∇
→
Φ
=
q
c
4
Ï€
ϵ
0
1
(
R
c
−
R
→
â‹…
v
→
)
2
[
∇
→
(
R
→
â‹…
v
→
)
−
c
∇
→
R
]
,
…
(
1
)
∇
→
Φ
=
q
c
4
Ï€
ϵ
0
1
(
R
c
−
R
→
â‹…
v
→
)
2
[
∇
→
(
R
→
â‹…
v
→
)
−
c
∇
→
R
]
,
…
1
{: vec(grad)Phi=(qc)/(4piepsilon_(0))(1)/((Rc-( vec(R))*( vec(v)))^(2))[ vec(grad)( vec(R)* vec(v))-c vec(grad)R]”,” dots(1):} \begin{aligned}
\vec{\nabla} \Phi=\frac{q c}{4 \pi \epsilon_0} \frac{1}{(R c-\vec{R} \cdot \vec{v})^2}[\vec{\nabla}(\vec{R} \cdot \vec{v})-c \vec{\nabla} R], & \ldots\left(\mathrm{1}\right)\\
\end{aligned} ∇ → Φ = q c 4 π ϵ 0 1 ( R c − R → ⋅ v → ) 2 [ ∇ → ( R → ⋅ v → ) − c ∇ → R ] , … ( 1 )
Since retarded time is given by:
t
r
=
t
−
R
c
⇒
R
=
c
(
t
−
t
r
)
t
r
=
t
−
R
c
⇒
R
=
c
t
−
t
r
{:[t_(r)=t-(R)/(c)],[=>R=c(t-t_(r))]:} \begin{aligned}
t_r & =t-\frac{R}{c} \\
\Rightarrow R & =c\left(t-t_r\right)
\end{aligned} t r = t − R c ⇒ R = c ( t − t r )
This gives
∇
→
R
=
−
c
∇
→
t
r
∇
→
R
=
−
c
∇
→
t
r
vec(grad)R=-c vec(grad)t_(r) \vec{\nabla} R=-c \vec{\nabla} t_r ∇ → R = − c ∇ → t r
Solving for 1st term in equation 1:\
Using the product rule:
∇
→
(
X
→
â‹…
Y
→
)
=
(
X
→
â‹…
∇
→
)
Y
→
+
(
Y
→
â‹…
∇
→
)
X
→
+
X
→
×
(
∇
→
×
Y
→
)
+
Y
→
×
(
∇
→
×
X
→
)
⇒
∇
(
R
→
â‹…
v
→
)
=
(
R
→
â‹…
∇
→
)
v
→
+
(
v
→
â‹…
∇
→
)
R
→
+
R
→
×
(
∇
→
×
v
→
)
+
v
→
×
(
∇
→
×
R
→
)
)
,
…
(
2
)
∇
→
(
X
→
â‹…
Y
→
)
=
(
X
→
â‹…
∇
→
)
Y
→
+
(
Y
→
â‹…
∇
→
)
X
→
+
X
→
×
(
∇
→
×
Y
→
)
+
Y
→
×
(
∇
→
×
X
→
)
⇒
∇
(
R
→
â‹…
v
→
)
=
(
R
→
â‹…
∇
→
)
v
→
+
(
v
→
â‹…
∇
→
)
R
→
+
R
→
×
(
∇
→
×
v
→
)
+
v
→
×
(
∇
→
×
R
→
)
)
,
…
2
{:[ vec(grad)( vec(X)* vec(Y))=( vec(X)* vec(grad)) vec(Y)+( vec(Y)* vec(grad)) vec(X)+ vec(X)xx( vec(grad)xx vec(Y))+ vec(Y)xx( vec(grad)xx vec(X))],[=>grad( vec(R)* vec(v))=( vec(R)* vec(grad)) vec(v)+( vec(v)* vec(grad)) vec(R)+ vec(R)xx( vec(grad)xx vec(v))+ vec(v)xx( vec(grad)xx vec(R)))”,”dots(2)]:} \begin{aligned}
\vec{\nabla}(\vec{X} \cdot \vec{Y})=(\vec{X} \cdot \vec{\nabla}) \vec{Y}+(\vec{Y} \cdot \vec{\nabla}) \vec{X}+\vec{X} \times(\vec{\nabla} \times \vec{Y})+\vec{Y} \times(\vec{\nabla} \times \vec{X}) \\
\Rightarrow{\boldsymbol{\nabla}}(\overrightarrow{\boldsymbol{R}} \cdot \overrightarrow{\boldsymbol{v}})=(\overrightarrow{\boldsymbol{R}} \cdot \overrightarrow{\boldsymbol{\nabla}}) \overrightarrow{\boldsymbol{v}}+(\overrightarrow{\boldsymbol{v}} \cdot \overrightarrow{\boldsymbol{\nabla}}) \overrightarrow{\boldsymbol{R}}+\overrightarrow{\boldsymbol{R}} \times(\overrightarrow{\boldsymbol{\nabla}} \times \overrightarrow{\boldsymbol{v}})+\overrightarrow{\boldsymbol{v}} \times(\overrightarrow{\boldsymbol{\nabla}} \times \overrightarrow{\boldsymbol{R}})),\ldots\left(\mathrm{2}\right)\\
\end{aligned} ∇ → ( X → ⋅ Y → ) = ( X → ⋅ ∇ → ) Y → + ( Y → ⋅ ∇ → ) X → + X → × ( ∇ → × Y → ) + Y → × ( ∇ → × X → ) ⇒ ∇ ( R → ⋅ v → ) = ( R → ⋅ ∇ → ) v → + ( v → ⋅ ∇ → ) R → + R → × ( ∇ → × v → ) + v → × ( ∇ → × R → ) ) , … ( 2 )
1st term in eq. (2):
(
R
→
â‹…
∇
→
)
v
→
=
(
R
x
∂
∂
x
+
R
y
∂
∂
y
+
R
z
∂
∂
z
)
v
→
(
t
r
)
=
R
x
d
v
→
d
t
r
∂
t
r
∂
x
+
R
y
d
v
→
d
t
r
∂
t
r
∂
y
+
R
z
d
v
→
d
t
r
∂
t
r
∂
z
=
a
→
(
R
→
â‹…
∇
→
t
r
)
(
R
→
â‹…
∇
→
)
v
→
=
R
x
∂
∂
x
+
R
y
∂
∂
y
+
R
z
∂
∂
z
v
→
t
r
=
R
x
d
v
→
d
t
r
∂
t
r
∂
x
+
R
y
d
v
→
d
t
r
∂
t
r
∂
y
+
R
z
d
v
→
d
t
r
∂
t
r
∂
z
=
a
→
R
→
â‹…
∇
→
t
r
{:[( vec(R)* vec(grad)) vec(v)=(R_(x)(del)/(del x)+R_(y)(del)/(del y)+R_(z)(del)/(del z)) vec(v)(t_(r))],[=R_(x)(d( vec(v)))/((d)t_(r))(delt_(r))/(del x)+R_(y)(d( vec(v)))/((d)t_(r))(delt_(r))/(del y)+R_(z)(d( vec(v)))/((d)t_(r))(delt_(r))/(del z)],[= vec(a)(( vec(R))*( vec(grad))t_(r))]:} \begin{aligned}
(\overrightarrow{\boldsymbol{R}} \cdot \vec{\nabla}) \vec{v} & =\left(R_x \frac{\partial}{\partial x}+R_y \frac{\partial}{\partial y}+R_z \frac{\partial}{\partial z}\right) \vec{v}\left(t_r\right) \\
& =R_x \frac{\mathrm{d} \vec{v}}{\mathrm{~d} t_r} \frac{\partial t_r}{\partial x}+R_y \frac{\mathrm{d} \vec{v}}{\mathrm{~d} t_r} \frac{\partial t_r}{\partial y}+R_z \frac{\mathrm{d} \vec{v}}{\mathrm{~d} t_r} \frac{\partial t_r}{\partial z} \\
& =\vec{a}\left(\vec{R} \cdot \vec{\nabla} t_r\right)
\end{aligned} ( R → ⋅ ∇ → ) v → = ( R x ∂ ∂ x + R y ∂ ∂ y + R z ∂ ∂ z ) v → ( t r ) = R x d v → d t r ∂ t r ∂ x + R y d v → d t r ∂ t r ∂ y + R z d v → d t r ∂ t r ∂ z = a → ( R → ⋅ ∇ → t r )
2nd term in eq. (2):
(
v
→
â‹…
∇
→
)
R
→
=
(
v
→
â‹…
∇
→
)
r
→
−
(
v
→
â‹…
∇
→
)
w
→
(
v
→
â‹…
∇
→
)
R
→
=
(
v
→
â‹…
∇
→
)
r
→
−
(
v
→
â‹…
∇
→
)
w
→
( vec(v)* vec(grad)) vec(R)=( vec(v)* vec(grad)) vec(r)-( vec(v)* vec(grad)) vec(w) (\overrightarrow{\boldsymbol{v}} \cdot \overrightarrow{\boldsymbol{\nabla}}) \overrightarrow{\boldsymbol{R}}=(\overrightarrow{\boldsymbol{v}} \cdot \overrightarrow{\boldsymbol{\nabla}}) \overrightarrow{\boldsymbol{r}}-(\overrightarrow{\boldsymbol{v}} \cdot \overrightarrow{\boldsymbol{\nabla}}) \overrightarrow{\boldsymbol{w}}\\ ( v → ⋅ ∇ → ) R → = ( v → ⋅ ∇ → ) r → − ( v → ⋅ ∇ → ) w →
As,
R
→
=
r
→
−
w
→
(
t
r
)
R
→
=
r
→
−
w
→
(
t
r
)
{: vec(R)= vec(r)- vec(w)(t_(r)):} \begin{aligned}
\overrightarrow{\boldsymbol{R}}= \overrightarrow{\boldsymbol{r}}- \overrightarrow{\boldsymbol{w}}\boldsymbol{(t_r)}\\
\end{aligned} R → = r → − w → ( t r )
Here,
(
v
→
â‹…
∇
→
)
r
→
=
(
v
x
∂
∂
x
+
v
y
∂
∂
y
+
v
z
∂
∂
z
)
(
x
i
^
+
y
j
^
+
z
k
^
)
=
v
x
i
^
+
v
y
j
^
+
v
z
k
^
=
v
→
(
v
→
â‹…
∇
→
)
r
→
=
v
x
∂
∂
x
+
v
y
∂
∂
y
+
v
z
∂
∂
z
(
x
i
^
+
y
j
^
+
z
k
^
)
=
v
x
i
^
+
v
y
j
^
+
v
z
k
^
=
v
→
{:[( vec(v)* vec(grad)) vec(r)=(v_(x)(del)/(del x)+v_(y)(del)/(del y)+v_(z)(del)/(del z))(x hat(i)+y hat(j)+z hat(k))],[=v_(x) hat(i)+v_(y) hat(j)+v_(z) hat(k)= vec(v)]:} \begin{aligned}
(\overrightarrow{\boldsymbol{v}} \cdot \overrightarrow{\boldsymbol{\nabla}}) \overrightarrow{\boldsymbol{r}} & =\left(v_x \frac{\partial}{\partial x}+v_y \frac{\partial}{\partial y}+v_z \frac{\partial}{\partial z}\right)(x \hat{\boldsymbol{i}}+y \hat{\boldsymbol{j}}+z \hat{\boldsymbol{k}}) \\
& =v_x \hat{\boldsymbol{i}}+v_y \hat{\boldsymbol{j}}+v_z \hat{\boldsymbol{k}}=\overrightarrow{\boldsymbol{v}}
\end{aligned} ( v → ⋅ ∇ → ) r → = ( v x ∂ ∂ x + v y ∂ ∂ y + v z ∂ ∂ z ) ( x i ^ + y j ^ + z k ^ ) = v x i ^ + v y j ^ + v z k ^ = v →
Proceeding in a similar manner as for the 1st term in eq. (2):
(
v
→
â‹…
∇
→
)
w
→
=
v
→
(
v
→
â‹…
∇
→
t
r
)
(
v
→
â‹…
∇
→
)
w
→
=
v
→
v
→
â‹…
∇
→
t
r
( vec(v)* vec(grad)) vec(w)= vec(v)( vec(v)* vec(grad)t_(r)) (\overrightarrow{\boldsymbol{v}} \cdot \overrightarrow{\boldsymbol{\nabla}}) \overrightarrow{\boldsymbol{w}}=\overrightarrow{\boldsymbol{v}}\left(\overrightarrow{\boldsymbol{v}} \cdot \overrightarrow{\boldsymbol{\nabla}} t_r\right) ( v → ⋅ ∇ → ) w → = v → ( v → ⋅ ∇ → t r )
Hence, we obtain
(
v
→
â‹…
∇
→
)
R
→
=
v
→
−
v
→
(
v
→
â‹…
∇
→
t
r
)
(
v
→
â‹…
∇
→
)
R
→
=
v
→
−
v
→
v
→
â‹…
∇
→
t
r
( vec(v)* vec(grad)) vec(R)= vec(v)- vec(v)( vec(v)* vec(grad)t_(r)) (\overrightarrow{\boldsymbol{v}} \cdot \overrightarrow{\boldsymbol{\nabla}}) \overrightarrow{\boldsymbol{R}}=\overrightarrow{\boldsymbol{v}}-\overrightarrow{\boldsymbol{v}}\left(\overrightarrow{\boldsymbol{v}}\cdot \overrightarrow{\boldsymbol{\nabla}} t_r\right) ( v → ⋅ ∇ → ) R → = v → − v → ( v → ⋅ ∇ → t r )
3rd term in eq. (2):
∇
→
×
v
→
=
(
∂
v
z
∂
y
−
∂
v
y
∂
z
)
i
^
+
(
∂
v
x
∂
z
−
∂
v
z
∂
x
)
j
^
+
(
∂
v
y
∂
x
−
∂
v
x
∂
y
)
k
^
=
(
d
v
z
d
t
r
∂
t
r
∂
y
−
d
v
y
d
t
r
∂
t
r
∂
z
)
i
^
+
⋯
=
−
a
→
×
∇
→
t
r
∇
→
×
v
→
=
∂
v
z
∂
y
−
∂
v
y
∂
z
i
^
+
∂
v
x
∂
z
−
∂
v
z
∂
x
j
^
+
∂
v
y
∂
x
−
∂
v
x
∂
y
k
^
=
d
v
z
d
t
r
∂
t
r
∂
y
−
d
v
y
d
t
r
∂
t
r
∂
z
i
^
+
⋯
=
−
a
→
×
∇
→
t
r
{:[ vec(grad)xx vec(v)=((delv_(z))/(del y)-(delv_(y))/(del z)) hat(i)+((delv_(x))/(del z)-(delv_(z))/(del x)) hat(j)+((delv_(y))/(del x)-(delv_(x))/(del y)) hat(k)],[=((dv_(z))/((d)t_(r))(delt_(r))/(del y)-(dv_(y))/((d)t_(r))(delt_(r))/(del z)) hat(i)+cdots],[=- vec(a)xx vec(grad)t_(r)]:} \begin{aligned}
\overrightarrow{\boldsymbol{\nabla}} \times \overrightarrow{\boldsymbol{v}} & =\left(\frac{\partial v_z}{\partial y}-\frac{\partial v_y}{\partial z}\right) \hat{\boldsymbol{i}}+\left(\frac{\partial v_x}{\partial z}-\frac{\partial v_z}{\partial x}\right) \hat{\boldsymbol{j}}+\left(\frac{\partial v_y}{\partial x}-\frac{\partial v_x}{\partial y}\right) \hat{\boldsymbol{k}} \\
& =\left(\frac{\mathrm{d} v_z}{\mathrm{~d} t_r} \frac{\partial t_r}{\partial y}-\frac{\mathrm{d} v_y}{\mathrm{~d} t_r} \frac{\partial t_r}{\partial z}\right) \hat{\boldsymbol{i}}+\cdots \\
& =-\overrightarrow{\boldsymbol{a}} \times \overrightarrow{\boldsymbol{\nabla}} t_r
\end{aligned} ∇ → × v → = ( ∂ v z ∂ y − ∂ v y ∂ z ) i ^ + ( ∂ v x ∂ z − ∂ v z ∂ x ) j ^ + ( ∂ v y ∂ x − ∂ v x ∂ y ) k ^ = ( d v z d t r ∂ t r ∂ y − d v y d t r ∂ t r ∂ z ) i ^ + ⋯ = − a → × ∇ → t r
Therefore,
R
→
×
(
∇
→
×
v
→
)
=
−
R
→
×
(
a
→
×
∇
→
t
r
)
R
→
×
(
∇
→
×
v
→
)
=
−
R
→
×
a
→
×
∇
→
t
r
vec(R)xx( vec(grad)xx vec(v))=- vec(R)xx( vec(a)xx vec(grad)t_(r)) \overrightarrow{\boldsymbol{R}} \times(\vec{\nabla} \times \overrightarrow{\boldsymbol{v}})=-\overrightarrow{\boldsymbol{R}} \times\left(\overrightarrow{\boldsymbol{a}} \times \overrightarrow{\boldsymbol{\nabla}} t_r\right) R → × ( ∇ → × v → ) = − R → × ( a → × ∇ → t r )
4th term in eq. (2): (Same as 3rd term in eq. 2)
∇
→
×
R
→
=
∇
→
×
r
→
−
∇
→
×
w
→
=
0
−
[
−
v
→
×
∇
→
t
r
]
=
v
→
×
∇
→
t
r
∇
→
×
R
→
=
∇
→
×
r
→
−
∇
→
×
w
→
=
0
−
−
v
→
×
∇
→
t
r
=
v
→
×
∇
→
t
r
{:[ vec(grad)xx vec(R)= vec(grad)xx vec(r)- vec(grad)xx vec(w)],[=0-[- vec(v)xx vec(grad)t_(r)]],[= vec(v)xx vec(grad)t_(r)]:} \begin{aligned}
\overrightarrow{\boldsymbol{\nabla}} \times \overrightarrow{\boldsymbol{R}} & =\overrightarrow{\boldsymbol{\nabla}} \times \overrightarrow{\boldsymbol{r}}-\overrightarrow{\boldsymbol{\nabla}} \times \overrightarrow{\boldsymbol{w}} \\
& =0-\left[-\overrightarrow{\boldsymbol{v}} \times \overrightarrow{\boldsymbol{\nabla}} t_r\right]\\
& =\overrightarrow{\boldsymbol{v}} \times \overrightarrow{\boldsymbol{\nabla}} t_r
\end{aligned} ∇ → × R → = ∇ → × r → − ∇ → × w → = 0 − [ − v → × ∇ → t r ] = v → × ∇ → t r
Therefore,
v
→
×
(
∇
→
×
R
→
)
=
v
→
×
(
v
→
×
∇
→
t
r
)
v
→
×
(
∇
→
×
R
→
)
=
v
→
×
v
→
×
∇
→
t
r
vec(v)xx( vec(grad)xx vec(R))= vec(v)xx( vec(v)xx vec(grad)t_(r)) \overrightarrow{\boldsymbol{v}} \times(\overrightarrow{\boldsymbol{\nabla}} \times \overrightarrow{\boldsymbol{R}})=\overrightarrow{\boldsymbol{v}} \times\left(\overrightarrow{\boldsymbol{v}} \times \overrightarrow{\boldsymbol{\nabla}} t_r\right) v → × ( ∇ → × R → ) = v → × ( v → × ∇ → t r )
Then eq. (2) becomes,
∇
→
(
R
→
â‹…
v
→
)
=
a
→
(
R
→
â‹…
∇
→
t
r
)
+
v
→
−
v
→
(
v
→
â‹…
∇
→
t
r
)
−
R
→
×
(
a
→
×
∇
→
t
r
)
+
v
→
×
(
v
→
×
∇
→
t
r
)
∇
→
(
R
→
â‹…
v
→
)
=
a
→
R
→
â‹…
∇
→
t
r
+
v
→
−
v
→
v
→
â‹…
∇
→
t
r
−
R
→
×
a
→
×
∇
→
t
r
+
v
→
×
v
→
×
∇
→
t
r
{:[ vec(grad)( vec(R)* vec(v))= vec(a)( vec(R)* vec(grad)t_(r))+ vec(v)- vec(v)( vec(v)* vec(grad)t_(r))],[- vec(R)xx( vec(a)xx vec(grad)t_(r))+ vec(v)xx( vec(v)xx vec(grad)t_(r))]:} \begin{aligned}
\vec{\nabla}(\overrightarrow{\boldsymbol{R}} \cdot \overrightarrow{\boldsymbol{v}})= & \overrightarrow{\boldsymbol{a}}\left(\overrightarrow{\boldsymbol{R}} \cdot \overrightarrow{\boldsymbol{\nabla}} t_r\right)+\overrightarrow{\boldsymbol{v}}-\overrightarrow{\boldsymbol{v}}\left(\overrightarrow{\boldsymbol{v}} \cdot \overrightarrow{\boldsymbol{\nabla}} t_r\right) \\
& -\overrightarrow{\boldsymbol{R}} \times\left(\overrightarrow{\boldsymbol{a}} \times \overrightarrow{\boldsymbol{\nabla}} t_r\right)+\overrightarrow{\boldsymbol{v}} \times\left(\overrightarrow{\boldsymbol{v}} \times \overrightarrow{\boldsymbol{\nabla}} t_r\right)
\end{aligned} ∇ → ( R → ⋅ v → ) = a → ( R → ⋅ ∇ → t r ) + v → − v → ( v → ⋅ ∇ → t r ) − R → × ( a → × ∇ → t r ) + v → × ( v → × ∇ → t r )
Using BAC-CAB rule:
A
→
×
(
B
→
×
C
→
)
=
B
→
(
A
→
â‹…
C
→
)
−
C
→
(
A
→
â‹…
B
→
)
R
→
×
(
a
→
×
∇
→
t
r
)
=
a
→
(
R
→
â‹…
∇
→
t
r
)
−
∇
→
t
r
(
R
→
â‹…
a
→
)
v
→
×
(
v
→
×
∇
→
t
r
)
=
v
→
(
v
→
â‹…
∇
→
t
r
)
−
v
2
∇
→
t
r
A
→
×
(
B
→
×
C
→
)
=
B
→
(
A
→
â‹…
C
→
)
−
C
→
(
A
→
â‹…
B
→
)
R
→
×
a
→
×
∇
→
t
r
=
a
→
R
→
â‹…
∇
→
t
r
−
∇
→
t
r
(
R
→
â‹…
a
→
)
v
→
×
v
→
×
∇
→
t
r
=
v
→
v
→
â‹…
∇
→
t
r
−
v
2
∇
→
t
r
{:[ vec(A)xx( vec(B)xx vec(C))= vec(B)( vec(A)* vec(C))- vec(C)( vec(A)* vec(B))],[ vec(R)xx( vec(a)xx vec(grad)t_(r))= vec(a)( vec(R)*( vec(grad))t_(r))- vec(grad)t_(r)( vec(R)* vec(a))],[ vec(v)xx( vec(v)xx vec(grad)t_(r))= vec(v)( vec(v)* vec(grad)t_(r))-v^(2) vec(grad)t_(r)]:} \begin{aligned}
\overrightarrow{\boldsymbol{A}} \times(\overrightarrow{\boldsymbol{B}} \times \overrightarrow{\boldsymbol{C}}) & =\overrightarrow{\boldsymbol{B}}(\overrightarrow{\boldsymbol{A}} \cdot \overrightarrow{\boldsymbol{C}})-\overrightarrow{\boldsymbol{C}}(\overrightarrow{\boldsymbol{A}} \cdot \overrightarrow{\boldsymbol{B}}) \\
\overrightarrow{\boldsymbol{R}} \times\left(\overrightarrow{\boldsymbol{a}} \times \overrightarrow{\boldsymbol{\nabla}} t_r\right) & =\overrightarrow{\boldsymbol{a}}\left(\overrightarrow{\boldsymbol{R}} \cdot \vec{\nabla} t_r\right)-\vec{\nabla} t_r(\overrightarrow{\boldsymbol{R}} \cdot \overrightarrow{\boldsymbol{a}}) \\
\overrightarrow{\boldsymbol{v}} \times\left(\overrightarrow{\boldsymbol{v}} \times \overrightarrow{\boldsymbol{\nabla}} t_r\right) & =\overrightarrow{\boldsymbol{v}}\left(\overrightarrow{\boldsymbol{v}} \cdot \overrightarrow{\boldsymbol{\nabla}} t_r\right)-v^2 \overrightarrow{\boldsymbol{\nabla}} t_r
\end{aligned} A → × ( B → × C → ) = B → ( A → ⋅ C → ) − C → ( A → ⋅ B → ) R → × ( a → × ∇ → t r ) = a → ( R → ⋅ ∇ → t r ) − ∇ → t r ( R → ⋅ a → ) v → × ( v → × ∇ → t r ) = v → ( v → ⋅ ∇ → t r ) − v 2 ∇ → t r
Therefore,
∇
→
(
R
→
â‹…
v
→
)
=
a
→
(
R
→
â‹…
∇
→
t
r
)
+
v
→
−
v
→
(
v
→
â‹…
∇
→
t
r
)
−
a
→
(
R
→
â‹…
∇
→
t
r
)
+
∇
→
t
r
(
R
→
â‹…
a
→
)
+
v
→
(
v
→
â‹…
∇
→
t
r
)
−
v
2
∇
→
t
r
⇒
∇
→
(
R
→
â‹…
v
→
)
=
v
→
+
(
R
→
â‹…
a
→
−
v
2
)
∇
→
t
r
∇
→
(
R
→
â‹…
v
→
)
=
a
→
R
→
â‹…
∇
→
t
r
+
v
→
−
v
→
v
→
â‹…
∇
→
t
r
−
a
→
R
→
â‹…
∇
→
t
r
+
∇
→
t
r
(
R
→
â‹…
a
→
)
+
v
→
v
→
â‹…
∇
→
t
r
−
v
2
∇
→
t
r
⇒
∇
→
(
R
→
â‹…
v
→
)
=
v
→
+
R
→
â‹…
a
→
−
v
2
∇
→
t
r
{:[ vec(grad)( vec(R)* vec(v))= vec(a)( vec(R)*( vec(grad))t_(r))+ vec(v)- vec(v)( vec(v)*( vec(grad))t_(r))],[- vec(a)( vec(R)*( vec(grad))t_(r))+ vec(grad)t_(r)( vec(R)* vec(a))+ vec(v)( vec(v)* vec(grad)t_(r))-v^(2) vec(grad)t_(r)],[=> vec(grad)( vec(R)* vec(v))= vec(v)+( vec(R)* vec(a)-v^(2)) vec(grad)t_(r)]:} \begin{aligned}
\vec{\nabla}(\overrightarrow{\boldsymbol{R}} \cdot \overrightarrow{\boldsymbol{v}}) & =\overrightarrow{\boldsymbol{a}}\left(\overrightarrow{\boldsymbol{R}} \cdot \vec{\nabla} t_r\right)+\overrightarrow{\boldsymbol{v}}-\overrightarrow{\boldsymbol{v}}\left(\overrightarrow{\boldsymbol{v}} \cdot \vec{\nabla} t_r\right) \\
& -\overrightarrow{\boldsymbol{a}}\left(\overrightarrow{\boldsymbol{R}} \cdot \vec{\nabla} t_r\right)+\vec{\nabla} t_r(\overrightarrow{\boldsymbol{R}} \cdot \overrightarrow{\boldsymbol{a}})+\overrightarrow{\boldsymbol{v}}\left(\overrightarrow{\boldsymbol{v}} \cdot \overrightarrow{\boldsymbol{\nabla}} t_r\right)-v^2 \overrightarrow{\boldsymbol{\nabla}} t_r \\
\Rightarrow \vec{\nabla}(\overrightarrow{\boldsymbol{R}} \cdot \overrightarrow{\boldsymbol{v}}) & =\overrightarrow{\boldsymbol{v}}+\left(\overrightarrow{\boldsymbol{R}} \cdot \overrightarrow{\boldsymbol{a}}-v^2\right) \vec{\nabla} t_r
\end{aligned} ∇ → ( R → ⋅ v → ) = a → ( R → ⋅ ∇ → t r ) + v → − v → ( v → ⋅ ∇ → t r ) − a → ( R → ⋅ ∇ → t r ) + ∇ → t r ( R → ⋅ a → ) + v → ( v → ⋅ ∇ → t r ) − v 2 ∇ → t r ⇒ ∇ → ( R → ⋅ v → ) = v → + ( R → ⋅ a → − v 2 ) ∇ → t r
Hence, using above results in eq. (1):
∇
→
Φ
=
q
c
4
Ï€
ϵ
0
1
(
R
c
−
R
→
â‹…
v
→
)
2
[
v
→
+
(
R
→
â‹…
a
→
−
v
2
)
∇
→
t
r
+
c
2
∇
→
t
r
]
∇
→
Φ
=
q
c
4
Ï€
ϵ
0
1
(
R
c
−
R
→
â‹…
v
→
)
2
v
→
+
R
→
â‹…
a
→
−
v
2
∇
→
t
r
+
c
2
∇
→
t
r
{: vec(grad)Phi=(qc)/(4piepsilon_(0))(1)/((Rc- vec(R)* vec(v))^(2))[ vec(v)+( vec(R)* vec(a)-v^(2))( vec(grad))t_(r)+c^(2)( vec(grad))t_(r)]:} \begin{aligned}
& \vec{\nabla} \Phi=\frac{q c}{4 \pi \epsilon_0} \frac{1}{(R c-\overrightarrow{\boldsymbol{R}} \cdot \overrightarrow{\boldsymbol{v}})^2}\left[\overrightarrow{\boldsymbol{v}}+\left(\overrightarrow{\boldsymbol{R}} \cdot \overrightarrow{\boldsymbol{a}}-v^2\right) \vec{\nabla} t_r+c^2 \vec{\nabla} t_r\right] \\
\end{aligned} ∇ → Φ = q c 4 π ϵ 0 1 ( R c − R → ⋅ v → ) 2 [ v → + ( R → ⋅ a → − v 2 ) ∇ → t r + c 2 ∇ → t r ]
∇
→
Φ
=
q
c
4
Ï€
ϵ
0
1
(
R
c
−
R
→
â‹…
v
→
)
2
[
v
→
+
(
c
2
−
v
2
+
R
→
â‹…
a
→
)
∇
→
t
r
]
,
…
(
3
)
∇
→
Φ
=
q
c
4
Ï€
ϵ
0
1
(
R
c
−
R
→
â‹…
v
→
)
2
v
→
+
c
2
−
v
2
+
R
→
â‹…
a
→
∇
→
t
r
,
…
3
vec(grad)Phi=(qc)/(4piepsilon_(0))(1)/((Rc- vec(R)* vec(v))^(2))[ vec(v)+(c^(2)-v^(2)+ vec(R)* vec(a)) vec(grad)t_(r)],dots(3) \overrightarrow{\boldsymbol{\nabla}} \Phi=\frac{q c}{4 \pi \epsilon_0} \frac{1}{(R c-\overrightarrow{\boldsymbol{R}} \cdot \overrightarrow{\boldsymbol{v}})^2}\left[\overrightarrow{\boldsymbol{v}}+\left(c^2-v^2+\overrightarrow{\boldsymbol{R}} \cdot \overrightarrow{\boldsymbol{a}}\right) \overrightarrow{\boldsymbol{\nabla}} t_r\right],\ldots\left(\mathrm{3}\right)\\ ∇ → Φ = q c 4 π ϵ 0 1 ( R c − R → ⋅ v → ) 2 [ v → + ( c 2 − v 2 + R → ⋅ a → ) ∇ → t r ] , … ( 3 )
To find
∇
→
t
r
∇
→
t
r
vec(grad)t_(r) \vec{\nabla} t_r ∇ → t r , we know:
−
c
∇
→
t
r
=
∇
→
R
=
∇
→
R
→
â‹…
R
→
=
1
2
R
→
â‹…
R
→
∇
→
(
R
→
â‹…
R
→
)
=
1
R
[
(
R
→
â‹…
∇
→
)
R
→
+
R
→
×
(
∇
→
×
R
→
)
]
−
c
∇
→
t
r
=
∇
→
R
=
∇
→
R
→
â‹…
R
→
=
1
2
R
→
â‹…
R
→
∇
→
(
R
→
â‹…
R
→
)
=
1
R
[
(
R
→
â‹…
∇
→
)
R
→
+
R
→
×
(
∇
→
×
R
→
)
]
{:[-c vec(grad)t_(r)= vec(grad)R= vec(grad)sqrt( vec(R)* vec(R))=(1)/(2sqrt( vec(R)* vec(R))) vec(grad)( vec(R)* vec(R))],[=(1)/(R)[( vec(R)* vec(grad)) vec(R)+ vec(R)xx( vec(grad)xx vec(R))]]:} \begin{aligned}
-c \overrightarrow{\boldsymbol{\nabla}} t_r & =\overrightarrow{\boldsymbol{\nabla}} R=\overrightarrow{\boldsymbol{\nabla}} \sqrt{\overrightarrow{\boldsymbol{R}} \cdot \overrightarrow{\boldsymbol{R}}}=\frac{1}{2 \sqrt{\overrightarrow{\boldsymbol{R}} \cdot \overrightarrow{\boldsymbol{R}}}} \overrightarrow{\boldsymbol{\nabla}}(\overrightarrow{\boldsymbol{R}} \cdot \overrightarrow{\boldsymbol{R}}) \\
& =\frac{1}{R}[(\overrightarrow{\boldsymbol{R}} \cdot \vec{\nabla}) \overrightarrow{\boldsymbol{R}}+\overrightarrow{\boldsymbol{R}} \times(\overrightarrow{\boldsymbol{\nabla}} \times \overrightarrow{\boldsymbol{R}})]
\end{aligned} − c ∇ → t r = ∇ → R = ∇ → R → ⋅ R → = 1 2 R → ⋅ R → ∇ → ( R → ⋅ R → ) = 1 R [ ( R → ⋅ ∇ → ) R → + R → × ( ∇ → × R → ) ]
It can be shown that
(
R
→
â‹…
∇
→
)
R
→
=
R
→
−
v
→
(
R
→
â‹…
∇
→
t
r
)
(
R
→
â‹…
∇
→
)
R
→
=
R
→
−
v
→
R
→
â‹…
∇
→
t
r
( vec(R)* vec(grad)) vec(R)= vec(R)- vec(v)( vec(R)*( vec(grad))t_(r)) (\overrightarrow{\boldsymbol{R}} \cdot \vec{\nabla}) \overrightarrow{\boldsymbol{R}}=\overrightarrow{\boldsymbol{R}}-\overrightarrow{\boldsymbol{v}}\left(\overrightarrow{\boldsymbol{R}} \cdot \vec{\nabla} t_r\right) ( R → ⋅ ∇ → ) R → = R → − v → ( R → ⋅ ∇ → t r )
and
∇
→
×
R
→
=
v
→
×
∇
→
t
r
∇
→
×
R
→
=
v
→
×
∇
→
t
r
vec(grad)xx vec(R)= vec(v)xx vec(grad)t_(r) \vec{\nabla} \times \overrightarrow{\boldsymbol{R}}=\overrightarrow{\boldsymbol{v}} \times \vec{\nabla} t_r ∇ → × R → = v → × ∇ → t r \
Therefore,
−
c
∇
→
t
r
=
1
R
[
R
→
−
v
→
(
R
→
â‹…
∇
→
t
r
)
+
R
→
×
v
→
×
∇
→
t
r
]
−
c
∇
→
t
r
=
1
R
R
→
−
v
→
R
→
â‹…
∇
→
t
r
+
R
→
×
v
→
×
∇
→
t
r
{:-c vec(grad)t_(r)=(1)/(R)[ vec(R)- vec(v)( vec(R)* vec(grad)t_(r))+ vec(R)xx vec(v)xx vec(grad)t_(r)]:} \begin{aligned}
-c \overrightarrow{\boldsymbol{\nabla}} t_r & =\frac{1}{R}\left[\overrightarrow{\boldsymbol{R}}-\overrightarrow{\boldsymbol{v}}\left(\overrightarrow{\boldsymbol{R}} \cdot \overrightarrow{\boldsymbol{\nabla}} t_r\right)+\overrightarrow{\boldsymbol{R}} \times \overrightarrow{\boldsymbol{v}} \times \overrightarrow{\boldsymbol{\nabla}} t_r\right] \\
\end{aligned} − c ∇ → t r = 1 R [ R → − v → ( R → ⋅ ∇ → t r ) + R → × v → × ∇ → t r ]
Using BAC-CAB rule:
⇒
−
c
∇
→
t
r
=
1
R
[
R
→
−
(
R
→
â‹…
v
→
)
∇
→
t
r
]
⇒
∇
→
t
r
=
−
R
→
R
c
−
R
→
â‹…
v
→
,
…
(
4
)
⇒
−
c
∇
→
t
r
=
1
R
R
→
−
(
R
→
â‹…
v
→
)
∇
→
t
r
⇒
∇
→
t
r
=
−
R
→
R
c
−
R
→
â‹…
v
→
,
…
4
{:[=>-c vec(grad)t_(r)=(1)/(R)[ vec(R)-( vec(R)* vec(v))( vec(grad))t_(r)]],[=> vec(grad)t_(r)=(- vec(R))/(Rc- vec(R)* vec(v))”,”dots(4)]:} \begin{aligned}
\Rightarrow-c \overrightarrow{\boldsymbol{\nabla}} t_r & =\frac{1}{R}\left[\overrightarrow{\boldsymbol{R}}-(\overrightarrow{\boldsymbol{R}} \cdot \overrightarrow{\boldsymbol{v}}) \vec{\nabla} t_r\right] \\
\Rightarrow \overrightarrow{\boldsymbol{\nabla}} t_r & =\frac{-\overrightarrow{\boldsymbol{R}}}{R c-\overrightarrow{\boldsymbol{R}} \cdot \overrightarrow{\boldsymbol{v}}},\ldots\left(\mathrm{4}\right)\\
\end{aligned} ⇒ − c ∇ → t r = 1 R [ R → − ( R → ⋅ v → ) ∇ → t r ] ⇒ ∇ → t r = − R → R c − R → ⋅ v → , … ( 4 )
Inserting eq.(4) in eq.(3):
∇
→
Φ
=
q
c
4
Ï€
ϵ
0
1
(
R
c
−
R
→
â‹…
v
→
)
2
[
v
→
−
(
c
2
−
v
2
+
R
→
â‹…
a
→
)
R
→
R
c
−
R
→
â‹…
v
→
]
⇒
∇
→
Φ
=
q
c
4
Ï€
ϵ
0
1
(
R
c
−
R
→
â‹…
v
→
)
3
[
(
R
c
−
R
→
â‹…
v
→
)
v
→
−
(
c
2
−
v
2
+
R
→
â‹…
a
→
)
R
→
]
∇
→
Φ
=
q
c
4
Ï€
ϵ
0
1
(
R
c
−
R
→
â‹…
v
→
)
2
v
→
−
c
2
−
v
2
+
R
→
â‹…
a
→
R
→
R
c
−
R
→
â‹…
v
→
⇒
∇
→
Φ
=
q
c
4
Ï€
ϵ
0
1
(
R
c
−
R
→
â‹…
v
→
)
3
(
R
c
−
R
→
â‹…
v
→
)
v
→
−
c
2
−
v
2
+
R
→
â‹…
a
→
R
→
{:[ vec(grad)Phi=(qc)/(4piepsilon_(0))(1)/((Rc- vec(R)* vec(v))^(2))[ vec(v)-((c^(2)-v^(2)+ vec(R)* vec(a)) vec(R))/(Rc- vec(R)* vec(v))]],[=> vec(grad)Phi=(qc)/(4piepsilon_(0))(1)/((Rc- vec(R)* vec(v))^(3))[(Rc- vec(R)* vec(v)) vec(v)-(c^(2)-v^(2)+ vec(R)* vec(a)) vec(R)]]:} \begin{aligned}
\vec{\nabla} \Phi & =\frac{q c}{4 \pi \epsilon_0} \frac{1}{(R c-\overrightarrow{\boldsymbol{R}} \cdot \overrightarrow{\boldsymbol{v}})^2}\left[\overrightarrow{\boldsymbol{v}}-\frac{\left(c^2-v^2+\overrightarrow{\boldsymbol{R}} \cdot \overrightarrow{\boldsymbol{a}}\right) \overrightarrow{\boldsymbol{R}}}{R c-\overrightarrow{\boldsymbol{R}} \cdot \overrightarrow{\boldsymbol{v}}}\right] \\
\Rightarrow \vec{\nabla} \Phi & =\frac{q c}{4 \pi \epsilon_0} \frac{1}{(R c-\overrightarrow{\boldsymbol{R}} \cdot \overrightarrow{\boldsymbol{v}})^3}\left[(R c-\overrightarrow{\boldsymbol{R}} \cdot \overrightarrow{\boldsymbol{v}}) \overrightarrow{\boldsymbol{v}}-\left(c^2-v^2+\overrightarrow{\boldsymbol{R}} \cdot \overrightarrow{\boldsymbol{a}}\right) \overrightarrow{\boldsymbol{R}}\right]
\end{aligned} ∇ → Φ = q c 4 π ϵ 0 1 ( R c − R → ⋅ v → ) 2 [ v → − ( c 2 − v 2 + R → ⋅ a → ) R → R c − R → ⋅ v → ] ⇒ ∇ → Φ = q c 4 π ϵ 0 1 ( R c − R → ⋅ v → ) 3 [ ( R c − R → ⋅ v → ) v → − ( c 2 − v 2 + R → ⋅ a → ) R → ]
∇
→
Φ
=
q
c
4
Ï€
ϵ
0
1
(
R
c
−
R
→
â‹…
v
→
)
3
[
(
R
c
−
R
→
â‹…
v
→
)
v
→
−
(
c
2
−
v
2
+
R
→
â‹…
a
→
)
R
→
]
,
…
(
5
)
∇
→
Φ
=
q
c
4
Ï€
ϵ
0
1
(
R
c
−
R
→
â‹…
v
→
)
3
(
R
c
−
R
→
â‹…
v
→
)
v
→
−
c
2
−
v
2
+
R
→
â‹…
a
→
R
→
,
…
5
vec(grad)Phi=(qc)/(4piepsilon_(0))(1)/((Rc- vec(R)* vec(v))^(3))[(Rc- vec(R)* vec(v)) vec(v)-(c^(2)-v^(2)+ vec(R)* vec(a)) vec(R)],dots(5) \overrightarrow{\boldsymbol{\nabla}} \Phi=\frac{q c}{4 \pi \epsilon_0} \frac{1}{(R c-\overrightarrow{\boldsymbol{R}} \cdot \overrightarrow{\boldsymbol{v}})^3}\left[(R c-\overrightarrow{\boldsymbol{R}} \cdot \overrightarrow{\boldsymbol{v}}) \overrightarrow{\boldsymbol{v}}-\left(c^2-v^2+\overrightarrow{\boldsymbol{R}} \cdot \overrightarrow{\boldsymbol{a}}\right) \overrightarrow{\boldsymbol{R}}\right],\ldots\left(\mathrm{5}\right)\\ ∇ → Φ = q c 4 π ϵ 0 1 ( R c − R → ⋅ v → ) 3 [ ( R c − R → ⋅ v → ) v → − ( c 2 − v 2 + R → ⋅ a → ) R → ] , … ( 5 )
From the Liénard-Wiechert potential
A
→
(
r
→
,
t
)
=
v
→
c
2
Φ
(
r
→
,
t
)
A
→
(
r
→
,
t
)
=
v
→
c
2
Φ
(
r
→
,
t
)
vec(A)( vec(r),t)=( vec(v))/(c^(2))Phi( vec(r),t) \overrightarrow{\boldsymbol{A}}(\overrightarrow{\boldsymbol{r}}, t)=\frac{\overrightarrow{\boldsymbol{v}}}{c^2} \Phi(\overrightarrow{\boldsymbol{r}}, t) A → ( r → , t ) = v → c 2 Φ ( r → , t )
and
Φ
(
r
→
,
t
)
=
1
4
Ï€
ϵ
0
q
c
(
R
c
−
R
→
â‹…
v
→
)
Φ
(
r
→
,
t
)
=
1
4
Ï€
ϵ
0
q
c
(
R
c
−
R
→
â‹…
v
→
)
Phi( vec(r),t)=(1)/(4piepsilon_(0))(qc)/((Rc- vec(R)* vec(v))) \Phi(\overrightarrow{\boldsymbol{r}}, t)=\frac{1}{4 \pi \epsilon_0} \frac{q c}{(R c-\overrightarrow{\boldsymbol{R}} \cdot \overrightarrow{\boldsymbol{v}})} Φ ( r → , t ) = 1 4 π ϵ 0 q c ( R c − R → ⋅ v → )
Hence,
A
→
(
r
→
,
t
)
=
1
4
Ï€
ϵ
0
c
q
v
→
(
R
c
−
R
→
â‹…
v
→
)
A
→
(
r
→
,
t
)
=
1
4
Ï€
ϵ
0
c
q
v
→
(
R
c
−
R
→
â‹…
v
→
)
vec(A)( vec(r),t)=(1)/(4piepsilon_(0)c)(q vec(v))/((Rc- vec(R)* vec(v))) \overrightarrow{\boldsymbol{A}}(\overrightarrow{\boldsymbol{r}}, t)= \frac{1}{4 \pi \epsilon_0 c} \frac{q \overrightarrow{\boldsymbol{v}}}{(R c-\overrightarrow{\boldsymbol{R}} \cdot \overrightarrow{\boldsymbol{v}})} A → ( r → , t ) = 1 4 π ϵ 0 c q v → ( R c − R → ⋅ v → )
Therefore,
∂
A
→
∂
t
=
q
4
Ï€
ϵ
0
c
[
∂
v
→
∂
t
(
1
R
c
−
R
→
â‹…
v
→
)
+
v
→
∂
∂
t
(
1
R
c
−
R
→
â‹…
v
→
)
]
,
…
(
6
)
∂
A
→
∂
t
=
q
4
Ï€
ϵ
0
c
∂
v
→
∂
t
1
R
c
−
R
→
â‹…
v
→
+
v
→
∂
∂
t
1
R
c
−
R
→
â‹…
v
→
,
…
6
{:(del vec(A))/(del t)=(q)/(4piepsilon_(0)c)[(del vec(v))/(del t)((1)/(Rc- vec(R)* vec(v)))+ vec(v)(del)/(del t)((1)/(Rc- vec(R)* vec(v)))]”,”dots(6):} \begin{aligned}
\frac{\partial \overrightarrow{\boldsymbol{A}}}{\partial t}= \frac{q}{4 \pi \epsilon_0 c}\left[\frac{\partial\overrightarrow{{\boldsymbol{v}}}}{\partial t}\left(\frac{1}{Rc-\overrightarrow{\boldsymbol{R}} \cdot \overrightarrow{\boldsymbol{v}}}\right)+\overrightarrow{\boldsymbol{v}}\frac{\partial}{\partial t}\left(\frac{1}{Rc-\overrightarrow{\boldsymbol{R}} \cdot \overrightarrow{\boldsymbol{v}}}\right)\right],
\ldots\left(\mathrm{6}\right)\\
\end{aligned} ∂ A → ∂ t = q 4 π ϵ 0 c [ ∂ v → ∂ t ( 1 R c − R → ⋅ v → ) + v → ∂ ∂ t ( 1 R c − R → ⋅ v → ) ] , … ( 6 )
Now, solving for 1st term in eq. (6),\
∂
v
→
∂
t
=
d
v
(
t
r
)
d
t
r
∂
t
r
∂
t
=
a
→
(
t
r
)
∂
t
r
∂
t
,
…
(
7
)
∂
v
→
∂
t
=
d
v
t
r
d
t
r
∂
t
r
∂
t
=
a
→
(
t
r
)
∂
t
r
∂
t
,
…
7
{:(del vec(v))/(del t)=(d(v(t_(r))))/(dt_(r))(delt_(r))/(del t)= vec(a)(t_(r))(delt_(r))/(del t)”,”dots(7):} \begin{aligned}
\frac{\partial\overrightarrow{{\boldsymbol{v}}}}{\partial t}=\frac{d{\boldsymbol{v}\left(t_r\right)}}{dt_r}\frac{\partial t_r}{\partial t}=\overrightarrow{\boldsymbol{a}}(t_r)\frac{\partial t_r}{\partial t},\ldots\left(\mathrm{7}\right)\\
\end{aligned} ∂ v → ∂ t = d v ( t r ) d t r ∂ t r ∂ t = a → ( t r ) ∂ t r ∂ t , … ( 7 )
Calculation of
∂
t
r
∂
t
∂
t
r
∂
t
(delt_(r))/(del t) \mathbf{\frac{\partial t_r}{\partial t}} ∂ t r ∂ t :\
Since,\
R
=
c
(
t
−
t
r
)
=
c
Δ
t
r
,
R
→
=
r
→
−
w
→
(
t
r
)
⇒
R
→
â‹…
R
→
=
c
2
(
t
−
t
r
)
2
⇒
∂
∂
t
c
2
(
t
−
t
r
)
2
=
∂
∂
t
(
R
→
â‹…
R
→
)
⇒
c
.
c
(
t
−
t
r
)
.
(
1
−
∂
t
r
∂
t
)
=
R
→
∂
∂
t
[
r
→
−
w
→
(
t
r
)
]
⇒
c
R
(
1
−
∂
t
r
∂
t
)
=
R
→
[
∂
∂
t
r
→
−
∂
∂
t
w
→
(
t
r
)
]
R
=
c
(
t
−
t
r
)
=
c
Δ
t
r
,
R
→
=
r
→
−
w
→
(
t
r
)
⇒
R
→
â‹…
R
→
=
c
2
(
t
−
t
r
)
2
⇒
∂
∂
t
c
2
(
t
−
t
r
)
2
=
∂
∂
t
R
→
â‹…
R
→
⇒
c
.
c
(
t
−
t
r
)
.
(
1
−
∂
t
r
∂
t
)
=
R
→
∂
∂
t
[
r
→
−
w
→
(
t
r
)
]
⇒
c
R
(
1
−
∂
t
r
∂
t
)
=
R
→
[
∂
∂
t
r
→
−
∂
∂
t
w
→
(
t
r
)
]
{:[R=c(t-t_(r))=c Deltat_(r)”,” vec(R)= vec(r)- vec(w)(t_(r))],[=> vec(R)* vec(R)=c^(2)(t-t_(r))^(2)],[=>(del)/(del t)c^(2)(t-t_(r))^(2)=(del)/(del t)( vec(R)* vec(R))],[=>c.c(t-t_(r)).(1-(delt_(r))/(del t))= vec(R)(del)/(del t)[ vec(r)- vec(w)(t_(r))]],[=>cR(1-(delt_(r))/(del t))= vec(R)[(del)/(del t) vec(r)-(del)/(del t) vec(w)(t_(r))]]:} \begin{gathered}
R=c(t-t_r)= c \Delta t_r, \overrightarrow{\boldsymbol{R}}= \overrightarrow{\boldsymbol{r}}- \overrightarrow{\boldsymbol{w}}(t_r)\\
\Rightarrow\overrightarrow{\boldsymbol{R}} \cdot\overrightarrow{\boldsymbol{R}} = c^2 (t- t_r)^2\\
\Rightarrow\frac{\partial}{\partial t} c^2 (t-t_r)^2= \frac{\partial}{\partial t}\left(\overrightarrow{\boldsymbol{R}} \cdot\overrightarrow{\boldsymbol{R}}\right)\\
\Rightarrow c.c (t-t_r).(1-\frac{\partial t_r}{\partial t})= \overrightarrow{\boldsymbol{R}} \frac{\partial}{\partial t}[\overrightarrow{\boldsymbol{r}}-\overrightarrow{\boldsymbol{w}}(t_r)]\\
\Rightarrow c R (1-\frac{\partial t_r}{\partial t}) = \overrightarrow{\boldsymbol{R}} [\frac{\partial}{\partial t}\overrightarrow{\boldsymbol{r}}-\frac{\partial}{\partial t}\overrightarrow{\boldsymbol{w}}(t_r)]\\
\end{gathered} R = c ( t − t r ) = c Δ t r , R → = r → − w → ( t r ) ⇒ R → ⋅ R → = c 2 ( t − t r ) 2 ⇒ ∂ ∂ t c 2 ( t − t r ) 2 = ∂ ∂ t ( R → ⋅ R → ) ⇒ c . c ( t − t r ) . ( 1 − ∂ t r ∂ t ) = R → ∂ ∂ t [ r → − w → ( t r ) ] ⇒ c R ( 1 − ∂ t r ∂ t ) = R → [ ∂ ∂ t r → − ∂ ∂ t w → ( t r ) ]
Since,
∂
∂
t
r
→
=
0
,
∂
w
→
(
t
r
)
∂
t
=
∂
w
→
(
t
r
)
∂
t
r
∂
t
r
∂
t
=
v
→
(
t
r
)
∂
t
r
∂
t
∂
∂
t
r
→
=
0
,
∂
w
→
(
t
r
)
∂
t
=
∂
w
→
(
t
r
)
∂
t
r
∂
t
r
∂
t
=
v
→
(
t
r
)
∂
t
r
∂
t
{:(del)/(del t) vec(r)=0″,”(del vec(w)(t_(r)))/(del t)=(del vec(w)(t_(r)))/(delt_(r))(delt_(r))/(del t)= vec(v)(t_(r))(delt_(r))/(del t):} \begin{aligned}
\frac{\partial}{\partial t}\overrightarrow{\boldsymbol{r}}=0,\frac{\partial \overrightarrow{\boldsymbol{w}}(t_r)}{\partial t}= \frac{\partial\overrightarrow{\boldsymbol{w}}(t_r)}{\partial t_r} \frac{\partial t_r}{\partial t}= \overrightarrow{\boldsymbol{v}}(t_r) \frac{\partial t_r}{\partial t}\\
\end{aligned} ∂ ∂ t r → = 0 , ∂ w → ( t r ) ∂ t = ∂ w → ( t r ) ∂ t r ∂ t r ∂ t = v → ( t r ) ∂ t r ∂ t
Hence,
∂
R
→
∂
t
=
−
v
→
(
t
r
)
∂
t
r
∂
t
,
∂
R
∂
t
=
c
(
1
−
∂
t
r
∂
t
)
…
(
8
)
∂
R
→
∂
t
=
−
v
→
(
t
r
)
∂
t
r
∂
t
,
∂
R
∂
t
=
c
1
−
∂
t
r
∂
t
…
8
{:(del vec(R))/(del t)=- vec(v)(t_(r))(delt_(r))/(del t)”,”(del R)/(del t)=c(1-(delt_(r))/(del t))dots(8):} \begin{aligned}
\frac{\partial \overrightarrow{\boldsymbol{R}}}{\partial t} = -\overrightarrow{\boldsymbol{v}}(t_r) \frac{\partial t_r}{\partial t}, \frac{\partial R}{\partial t} = c\left(1- \frac{\partial t_r}{\partial t}\right)\ldots\left(\mathrm{8}\right)\\
\end{aligned} ∂ R → ∂ t = − v → ( t r ) ∂ t r ∂ t , ∂ R ∂ t = c ( 1 − ∂ t r ∂ t ) … ( 8 )
Therefore,
c
R
(
1
−
∂
t
r
∂
t
)
=
−
R
→
â‹…
v
→
(
t
r
)
∂
t
r
∂
t
c
R
(
1
−
∂
t
r
∂
t
)
=
−
R
→
â‹…
v
→
(
t
r
)
∂
t
r
∂
t
{:cR(1-(delt_(r))/(del t))=- vec(R)* vec(v)(t_(r))(delt_(r))/(del t):} \begin{aligned}
c R (1-\frac{\partial t_r}{\partial t}) = -\overrightarrow{\boldsymbol{R}} \cdot\overrightarrow{\boldsymbol{v}}(t_r) \frac{\partial t_r}{\partial t}\\
\end{aligned} c R ( 1 − ∂ t r ∂ t ) = − R → ⋅ v → ( t r ) ∂ t r ∂ t
Rearranging the terms, we get,
∂
t
r
∂
t
=
R
c
R
c
−
R
→
â‹…
v
→
(
t
r
)
,
…
(
9
)
∂
t
r
∂
t
=
R
c
R
c
−
R
→
â‹…
v
→
(
t
r
)
,
…
9
{:(delt_(r))/(del t)=(Rc)/(Rc- vec(R)* vec(v)(t_(r)))”,”dots(9):} \begin{aligned}
\frac{\partial t_r}{\partial t}= \frac{Rc}{Rc-\overrightarrow{\boldsymbol{R}} \cdot\overrightarrow{\boldsymbol{v}}(t_r)},\ldots\left(\mathrm{9}\right)\\
\end{aligned} ∂ t r ∂ t = R c R c − R → ⋅ v → ( t r ) , … ( 9 )
Using eq. (9) in eq. (7), we get;
∂
v
→
∂
t
=
a
→
(
t
r
)
R
c
R
c
−
R
→
â‹…
v
→
(
t
r
)
,
…
(
10
)
∂
v
→
∂
t
=
a
→
(
t
r
)
R
c
R
c
−
R
→
â‹…
v
→
(
t
r
)
,
…
10
{:(del vec(v))/(del t)=( vec(a)(t_(r))Rc)/(Rc- vec(R)* vec(v)(t_(r)))”,”dots(10):} \begin{aligned}
\frac{\partial\overrightarrow{{\boldsymbol{v}}}}{\partial t}=\frac{\overrightarrow{\boldsymbol{a}}(t_r) Rc}{Rc-\overrightarrow{\boldsymbol{R}} \cdot\overrightarrow{\boldsymbol{v}}(t_r)},\ldots\left(\mathrm{10}\right)\\
\end{aligned} ∂ v → ∂ t = a → ( t r ) R c R c − R → ⋅ v → ( t r ) , … ( 10 )
Now, solving for 2nd term in eq. (6),\
∂
∂
t
[
1
R
c
−
R
→
â‹…
v
→
(
t
r
)
]
=
−
1
[
R
c
−
R
→
â‹…
v
→
]
2
∂
∂
t
[
R
c
−
R
→
â‹…
v
→
]
=
−
1
[
R
c
−
R
→
â‹…
v
→
]
2
[
c
∂
R
∂
t
−
R
→
â‹…
∂
v
→
∂
t
−
v
→
â‹…
∂
R
→
∂
t
]
,
…
(
11
)
∂
∂
t
1
R
c
−
R
→
â‹…
v
→
(
t
r
)
=
−
1
[
R
c
−
R
→
â‹…
v
→
]
2
∂
∂
t
[
R
c
−
R
→
â‹…
v
→
]
=
−
1
[
R
c
−
R
→
â‹…
v
→
]
2
c
∂
R
∂
t
−
R
→
â‹…
∂
v
→
∂
t
−
v
→
â‹…
∂
R
→
∂
t
,
…
11
{:[(del)/(del t)[(1)/(Rc- vec(R)* vec(v)(t_(r)))]=(-1)/([Rc- vec(R)* vec(v)]^(2))(del)/(del t)[Rc- vec(R)* vec(v)]],[=(-1)/([Rc- vec(R)* vec(v)]^(2))[c(del R)/(del t)- vec(R)*(del vec(v))/(del t)- vec(v)*(del vec(R))/(del t)]”,”dots(11)]:} \begin{aligned}
\frac{\partial}{\partial t}\left[\frac{1}{Rc-\overrightarrow{\boldsymbol{R}} \cdot\overrightarrow{\boldsymbol{v}}(t_r)}\right] = \frac{-1}{[Rc-\overrightarrow{\boldsymbol{R}} \cdot\overrightarrow{\boldsymbol{v}}]^2} \frac{\partial}{\partial t} [Rc-\overrightarrow{\boldsymbol{R}} \cdot\overrightarrow{\boldsymbol{v}}]\\
= \frac{-1}{[Rc-\overrightarrow{\boldsymbol{R}} \cdot\overrightarrow{\boldsymbol{v}}]^2} \left[c\frac{\partial R}{\partial t} – \overrightarrow{\boldsymbol{R}} \cdot \frac{\partial \overrightarrow{\boldsymbol{v}}}{\partial t}-\overrightarrow{\boldsymbol{v}} \cdot \frac{\partial \overrightarrow{\boldsymbol{R}}}{\partial t}\right] ,\ldots\left(\mathrm{11}\right)\\
\end{aligned} ∂ ∂ t [ 1 R c − R → ⋅ v → ( t r ) ] = − 1 [ R c − R → ⋅ v → ] 2 ∂ ∂ t [ R c − R → ⋅ v → ] = − 1 [ R c − R → ⋅ v → ] 2 [ c ∂ R ∂ t − R → ⋅ ∂ v → ∂ t − v → ⋅ ∂ R → ∂ t ] , … ( 11 )
Solving each term in eq. (11) using eq. (8-10);
c
∂
R
∂
t
=
c
2
(
1
−
∂
t
r
∂
t
)
=
c
2
[
−
R
→
â‹…
v
→
R
c
−
R
→
â‹…
v
→
]
R
→
â‹…
∂
v
→
∂
t
=
R
→
â‹…
a
→
(
t
r
)
R
c
R
c
−
R
→
â‹…
v
→
v
→
â‹…
∂
R
→
∂
t
=
−
v
2
∂
t
r
∂
t
=
−
v
2
R
c
R
c
−
R
→
â‹…
v
→
c
∂
R
∂
t
=
c
2
1
−
∂
t
r
∂
t
=
c
2
−
R
→
â‹…
v
→
R
c
−
R
→
â‹…
v
→
R
→
â‹…
∂
v
→
∂
t
=
R
→
â‹…
a
→
(
t
r
)
R
c
R
c
−
R
→
â‹…
v
→
v
→
â‹…
∂
R
→
∂
t
=
−
v
2
∂
t
r
∂
t
=
−
v
2
R
c
R
c
−
R
→
â‹…
v
→
{:[c(del R)/(del t)=c^(2)(1-(delt_(r))/(del t))=c^(2)[(- vec(R)* vec(v))/(Rc- vec(R)* vec(v))]],[ vec(R)*(del vec(v))/(del t)=( vec(R)* vec(a)(t_(r))Rc)/(Rc- vec(R)* vec(v))],[ vec(v)*(del vec(R))/(del t)=-v^(2)(delt_(r))/(del t)=(-v^(2)Rc)/(Rc- vec(R)* vec(v))]:} \begin{gathered}
c\frac{\partial R}{\partial t}= c^2\left(1- \frac{\partial t_r}{\partial t}\right) = c^2 \left[\frac{-\overrightarrow{\boldsymbol{R}} \cdot\overrightarrow{\boldsymbol{v}}}{Rc-\overrightarrow{\boldsymbol{R}} \cdot\overrightarrow{\boldsymbol{v}}}\right]\\
\overrightarrow{\boldsymbol{R}} \cdot \frac{\partial \overrightarrow{\boldsymbol{v}}}{\partial t}= \frac{\overrightarrow{\boldsymbol{R}} \cdot\overrightarrow{\boldsymbol{a}}(t_r) Rc}{Rc-\overrightarrow{\boldsymbol{R}} \cdot\overrightarrow{\boldsymbol{v}}}\\
\overrightarrow{\boldsymbol{v}} \cdot \frac{\partial \overrightarrow{\boldsymbol{R}}}{\partial t}= -v^2 \frac{\partial t_r}{\partial t}= \frac{-v^2Rc}{Rc-\overrightarrow{\boldsymbol{R}} \cdot\overrightarrow{\boldsymbol{v}}} \\
\end{gathered} c ∂ R ∂ t = c 2 ( 1 − ∂ t r ∂ t ) = c 2 [ − R → ⋅ v → R c − R → ⋅ v → ] R → ⋅ ∂ v → ∂ t = R → ⋅ a → ( t r ) R c R c − R → ⋅ v → v → ⋅ ∂ R → ∂ t = − v 2 ∂ t r ∂ t = − v 2 R c R c − R → ⋅ v →
Using the above calculated terms in eq. (11) and using eq. (10) and eq. (11) in eq. (6) we get:\
∂
A
→
∂
t
=
q
4
Ï€
ϵ
0
c
[
R
c
a
→
(
R
c
−
R
→
â‹…
v
→
)
2
−
v
→
(
R
c
−
R
→
â‹…
v
→
)
2
(
c
2
−
R
c
3
R
c
−
R
→
â‹…
v
→
−
R
→
â‹…
a
→
R
c
R
c
−
R
→
â‹…
v
→
+
R
c
v
2
R
c
−
R
→
â‹…
v
→
)
]
,
⇒
∂
A
→
∂
t
=
q
4
Ï€
ϵ
0
c
1
(
R
c
−
R
→
â‹…
v
→
)
3
[
R
c
a
→
(
R
c
−
R
→
â‹…
v
→
)
−
v
→
c
2
(
R
c
−
R
→
â‹…
v
→
)
+
R
c
3
v
→
+
R
→
â‹…
a
→
R
c
−
v
2
R
c
v
→
]
⇒
∂
A
→
∂
t
=
q
c
4
Ï€
ϵ
0
1
(
R
c
−
R
→
â‹…
v
→
)
3
[
(
R
c
−
R
→
â‹…
v
→
)
(
R
c
a
→
−
v
→
)
+
(
c
2
−
v
2
+
R
→
â‹…
a
→
)
R
c
v
→
]
,
…
(
12
)
∂
A
→
∂
t
=
q
4
Ï€
ϵ
0
c
R
c
a
→
R
c
−
R
→
â‹…
v
→
2
−
v
→
R
c
−
R
→
â‹…
v
→
2
c
2
−
R
c
3
R
c
−
R
→
â‹…
v
→
−
R
→
â‹…
a
→
R
c
R
c
−
R
→
â‹…
v
→
+
R
c
v
2
R
c
−
R
→
â‹…
v
→
,
⇒
∂
A
→
∂
t
=
q
4
Ï€
ϵ
0
c
1
R
c
−
R
→
â‹…
v
→
3
R
c
a
→
(
R
c
−
R
→
â‹…
v
→
)
−
v
→
c
2
(
R
c
−
R
→
â‹…
v
→
)
+
R
c
3
v
→
+
R
→
â‹…
a
→
R
c
−
v
2
R
c
v
→
⇒
∂
A
→
∂
t
=
q
c
4
Ï€
ϵ
0
1
R
c
−
R
→
â‹…
v
→
3
(
R
c
−
R
→
â‹…
v
→
)
(
R
c
a
→
−
v
→
)
+
(
c
2
−
v
2
+
R
→
â‹…
a
→
)
R
c
v
→
,
…
12
{:[(del vec(A))/(del t)=(q)/(4piepsilon_(0)c)[(Rc vec(a))/((Rc- vec(R)* vec(v))^(2))-( vec(v))/((Rc- vec(R)* vec(v))^(2))(c^(2)-(Rc^(3))/(Rc- vec(R)* vec(v))-( vec(R)* vec(a)Rc)/(Rc- vec(R)* vec(v))+(Rcv^(2))/(Rc- vec(R)* vec(v)))]”,”],[=>(del vec(A))/(del t)=(q)/(4piepsilon_(0)c)(1)/((Rc- vec(R)* vec(v))^(3))[Rc vec(a)(Rc- vec(R)* vec(v))- vec(v)c^(2)(Rc- vec(R)* vec(v))+Rc^(3) vec(v)+ vec(R)* vec(a)Rc-v^(2)Rc vec(v)]],[=>(del vec(A))/(del t)=(qc)/(4piepsilon_(0))(1)/((Rc- vec(R)* vec(v))^(3))[(Rc- vec(R)* vec(v))((R)/(c) vec(a)- vec(v))+(c^(2)-v^(2)+ vec(R)* vec(a))(R)/(c) vec(v)]”,”dots(12)],[]:} \begin{aligned}
&\frac{\partial \overrightarrow{\boldsymbol{A}}}{\partial t}= \frac{q}{4 \pi \epsilon_0 c}\left[\frac{Rc\overrightarrow{\boldsymbol{a}}}{\left(Rc-\overrightarrow{\boldsymbol{R}} \cdot \overrightarrow{\boldsymbol{v}}\right)^2}-\frac{\overrightarrow{\boldsymbol{v}}}{\left(Rc-\overrightarrow{\boldsymbol{R}} \cdot \overrightarrow{\boldsymbol{v}}\right)^2}\left(c^2- \frac{Rc^3}{Rc-\overrightarrow{\boldsymbol{R}} \cdot \overrightarrow{\boldsymbol{v}}}-\frac{\overrightarrow{\boldsymbol{R}}\cdot\overrightarrow{\boldsymbol{a}}Rc}{Rc-\overrightarrow{\boldsymbol{R}} \cdot \overrightarrow{\boldsymbol{v}}}+\frac{Rcv^2}{Rc-\overrightarrow{\boldsymbol{R}} \cdot \overrightarrow{\boldsymbol{v}}}\right)\right],& \\
&\Rightarrow\frac{\partial \overrightarrow{\boldsymbol{A}}}{\partial t}=\frac{q}{4 \pi \epsilon_0 c}\frac{1}{\left(Rc-\overrightarrow{\boldsymbol{R}} \cdot \overrightarrow{\boldsymbol{v}}\right)^3}\left[Rc\overrightarrow{\boldsymbol{a}}(Rc-\overrightarrow{\boldsymbol{R}}\cdot\overrightarrow{\boldsymbol{v}})-\overrightarrow{\boldsymbol{v}}c^2(Rc-\overrightarrow{\boldsymbol{R}}\cdot\overrightarrow{\boldsymbol{v}})+Rc^3\overrightarrow{\boldsymbol{v}}+\overrightarrow{\boldsymbol{R}}\cdot\overrightarrow{\boldsymbol{a}}Rc-v^2Rc\overrightarrow{\boldsymbol{v}}\right]&\\
&\Rightarrow\frac{\partial \overrightarrow{\boldsymbol{A}}}{\partial t}=\frac{qc}{4 \pi \epsilon_0}\frac{1}{\left(Rc-\overrightarrow{\boldsymbol{R}} \cdot \overrightarrow{\boldsymbol{v}}\right)^3}\left[(Rc-\overrightarrow{\boldsymbol{R}}\cdot\overrightarrow{\boldsymbol{v}})(\frac{R}{c}\overrightarrow{\boldsymbol{a}}-\overrightarrow{\boldsymbol{v}})+(c^2-v^2+\overrightarrow{\boldsymbol{R}}\cdot\overrightarrow{\boldsymbol{a}})\frac{R}{c}\overrightarrow{\boldsymbol{v}}\right], \ldots\left(\mathrm{12}\right)\\&\\
\end{aligned} ∂ A → ∂ t = q 4 π ϵ 0 c [ R c a → ( R c − R → ⋅ v → ) 2 − v → ( R c − R → ⋅ v → ) 2 ( c 2 − R c 3 R c − R → ⋅ v → − R → ⋅ a → R c R c − R → ⋅ v → + R c v 2 R c − R → ⋅ v → ) ] , ⇒ ∂ A → ∂ t = q 4 π ϵ 0 c 1 ( R c − R → ⋅ v → ) 3 [ R c a → ( R c − R → ⋅ v → ) − v → c 2 ( R c − R → ⋅ v → ) + R c 3 v → + R → ⋅ a → R c − v 2 R c v → ] ⇒ ∂ A → ∂ t = q c 4 π ϵ 0 1 ( R c − R → ⋅ v → ) 3 [ ( R c − R → ⋅ v → ) ( R c a → − v → ) + ( c 2 − v 2 + R → ⋅ a → ) R c v → ] , … ( 12 )
Now introduce a new vector given as:
u
→
≡
c
R
^
−
v
→
u
→
≡
c
R
^
−
v
→
vec(u)-=c hat(R)- vec(v) \overrightarrow{\boldsymbol{u}} \equiv c \hat{\boldsymbol{R}}-\overrightarrow{\boldsymbol{v}} u → ≡ c R ^ − v →
Then, eq. (5) and eq. (12) may be combined to obtain the electric field as;
⇒
E
→
(
r
→
,
t
)
=
q
4
Ï€
ϵ
0
R
(
R
→
â‹…
u
→
)
3
[
(
c
2
−
v
2
)
u
→
+
R
→
×
(
u
→
×
a
→
)
]
,
…
(
13
)
⇒
E
→
(
r
→
,
t
)
=
q
4
Ï€
ϵ
0
R
(
R
→
â‹…
u
→
)
3
c
2
−
v
2
u
→
+
R
→
×
(
u
→
×
a
→
)
,
…
13
{:=> vec(E)( vec(r)”,”t)=(q)/(4piepsilon_(0))(R)/(( vec(R)* vec(u))^(3))[(c^(2)-v^(2)) vec(u)+ vec(R)xx( vec(u)xx vec(a))]”,”dots(13):} \begin{aligned}
\Rightarrow \overrightarrow{\boldsymbol{E}}(\overrightarrow{\boldsymbol{r}}, t) & =\frac{q}{4 \pi \epsilon_0} \frac{R}{(\overrightarrow{\boldsymbol{R}} \cdot \overrightarrow{\boldsymbol{u}})^3}\left[\left(c^2-v^2\right) \overrightarrow{\boldsymbol{u}}+\overrightarrow{\boldsymbol{R}} \times(\overrightarrow{\boldsymbol{u}} \times \overrightarrow{\boldsymbol{a}})\right], \ldots\left(\mathrm{13}\right)\\
\end{aligned} ⇒ E → ( r → , t ) = q 4 π ϵ 0 R ( R → ⋅ u → ) 3 [ ( c 2 − v 2 ) u → + R → × ( u → × a → ) ] , … ( 13 )
Calculation of
B
→
B
→
vec(B) \mathbf{\vec{B}} B → :
B
→
=
∇
→
×
A
→
A
→
=
v
→
c
2
Φ
B
→
=
∇
→
×
A
→
A
→
=
v
→
c
2
Φ
{:[ vec(B)= vec(grad)xx vec(A)],[ vec(A)=(( vec(v)))/(c^(2))Phi]:} \begin{aligned}
& \overrightarrow{\boldsymbol{B}}=\vec{\nabla} \times \vec{A} \\
& \overrightarrow{\boldsymbol{A}}=\frac{\vec{v}}{c^2} \Phi
\end{aligned} B → = ∇ → × A → A → = v → c 2 Φ
Therefore, we have,
∇
→
×
A
→
=
1
c
2
∇
→
×
(
Φ
v
→
)
=
1
c
2
[
Φ
(
∇
→
×
v
→
)
−
v
→
×
(
∇
→
Φ
)
]
∇
→
×
A
→
=
1
c
2
∇
→
×
(
Φ
v
→
)
=
1
c
2
[
Φ
(
∇
→
×
v
→
)
−
v
→
×
(
∇
→
Φ
)
]
{:[ vec(grad)xx vec(A)=(1)/(c^(2)) vec(grad)xx(Phi vec(v))],[=(1)/(c^(2))[Phi( vec(grad)xx vec(v))- vec(v)xx( vec(grad)Phi)]]:} \begin{aligned}
\overrightarrow{\boldsymbol{\nabla}} \times \overrightarrow{\boldsymbol{A}} & =\frac{1}{c^2} \overrightarrow{\boldsymbol{\nabla}} \times(\Phi \overrightarrow{\boldsymbol{v}}) \\
& =\frac{1}{c^2}[\Phi(\overrightarrow{\boldsymbol{\nabla}} \times \overrightarrow{\boldsymbol{v}})-\overrightarrow{\boldsymbol{v}} \times(\overrightarrow{\boldsymbol{\nabla}} \Phi)]
\end{aligned} ∇ → × A → = 1 c 2 ∇ → × ( Φ v → ) = 1 c 2 [ Φ ( ∇ → × v → ) − v → × ( ∇ → Φ ) ]
We have already obtained
Φ
,
∇
→
Φ
Φ
,
∇
→
Φ
Phi, vec(grad)Phi \Phi, \vec{\nabla} \Phi Φ , ∇ → Φ and
∇
→
×
v
→
=
−
a
→
×
∇
→
t
r
∇
→
×
v
→
=
−
a
→
×
∇
→
t
r
vec(grad)xx vec(v)=- vec(a)xx vec(grad)t_(r) \vec{\nabla} \times \overrightarrow{\boldsymbol{v}}=-\overrightarrow{\boldsymbol{a}} \times \vec{\nabla} t_r ∇ → × v → = − a → × ∇ → t r . Inserting these and with
u
→
u
→
vec(u) \vec{u} u → , we get
B
→
(
r
→
,
t
)
=
∇
→
×
A
→
=
−
1
c
q
4
Ï€
ϵ
0
1
(
u
→
â‹…
R
→
)
3
R
→
×
[
(
c
2
−
v
2
)
v
→
+
(
R
→
â‹…
a
→
)
v
→
+
(
R
→
â‹…
u
→
)
a
→
]
,
…
(
14
)
B
→
(
r
→
,
t
)
=
∇
→
×
A
→
=
−
1
c
q
4
Ï€
ϵ
0
1
(
u
→
â‹…
R
→
)
3
R
→
×
c
2
−
v
2
v
→
+
(
R
→
â‹…
a
→
)
v
→
+
(
R
→
â‹…
u
→
)
a
→
,
…
14
vec(B)( vec(r),t)= vec(grad)xx vec(A)=-(1)/(c)(q)/(4piepsilon_(0))(1)/(( vec(u)* vec(R))^(3)) vec(R)xx[(c^(2)-v^(2)) vec(v)+( vec(R)* vec(a)) vec(v)+( vec(R)* vec(u)) vec(a)],dots(14) \overrightarrow{\boldsymbol{B}}(\overrightarrow{\boldsymbol{r}}, t) =\overrightarrow{\boldsymbol{\nabla}} \times \overrightarrow{\boldsymbol{A}} = -\frac{1}{c} \frac{q}{4 \pi \epsilon_0} \frac{1}{(\overrightarrow{\boldsymbol{u}} \cdot \overrightarrow{\boldsymbol{R}})^3} \overrightarrow{\boldsymbol{R}} \times\left[\left(c^2- v^2\right) \overrightarrow{\boldsymbol{v}}+(\overrightarrow{\boldsymbol{R}} \cdot \overrightarrow{\boldsymbol{a}}) \overrightarrow{\boldsymbol{v}}+(\overrightarrow{\boldsymbol{R}} \cdot \overrightarrow{\boldsymbol{u}}) \overrightarrow{\boldsymbol{a}}\right] ,\ldots\left(\mathrm{14}\right)\\ B → ( r → , t ) = ∇ → × A → = − 1 c q 4 π ϵ 0 1 ( u → ⋅ R → ) 3 R → × [ ( c 2 − v 2 ) v → + ( R → ⋅ a → ) v → + ( R → ⋅ u → ) a → ] , … ( 14 )
E
→
(
r
→
,
t
)
=
q
4
Ï€
ϵ
0
R
(
R
→
â‹…
u
→
)
3
[
(
c
2
−
v
2
)
u
→
+
R
→
×
(
u
→
×
a
→
)
]
,
…
(
13
)
E
→
(
r
→
,
t
)
=
q
4
Ï€
ϵ
0
R
(
R
→
â‹…
u
→
)
3
c
2
−
v
2
u
→
+
R
→
×
(
u
→
×
a
→
)
,
…
13
{: vec(E)( vec(r)”,”t)=(q)/(4piepsilon_(0))(R)/(( vec(R)* vec(u))^(3))[(c^(2)-v^(2)) vec(u)+ vec(R)xx( vec(u)xx vec(a))]”,”dots(13):} \begin{aligned}
\overrightarrow{\boldsymbol{E}}(\overrightarrow{\boldsymbol{r}}, t) & =\frac{q}{4 \pi \epsilon_0} \frac{R}{(\overrightarrow{\boldsymbol{R}} \cdot \overrightarrow{\boldsymbol{u}})^3}\left[\left(c^2-v^2\right) \overrightarrow{\boldsymbol{u}}+\overrightarrow{\boldsymbol{R}} \times(\overrightarrow{\boldsymbol{u}} \times \overrightarrow{\boldsymbol{a}})\right], \ldots\left(\mathrm{13}\right)\\
\end{aligned} E → ( r → , t ) = q 4 π ϵ 0 R ( R → ⋅ u → ) 3 [ ( c 2 − v 2 ) u → + R → × ( u → × a → ) ] , … ( 13 )
From the above, it can be shown that
B
→
(
r
→
,
t
)
=
1
c
R
^
×
E
→
(
r
→
,
t
)
B
→
(
r
→
,
t
)
=
1
c
R
^
×
E
→
(
r
→
,
t
)
vec(B)( vec(r),t)=(1)/(c) hat(R)xx vec(E)( vec(r),t) \overrightarrow{\boldsymbol{B}}(\overrightarrow{\boldsymbol{r}}, t)=\frac{1}{c} \hat{\boldsymbol{R}} \times \overrightarrow{\boldsymbol{E}}(\overrightarrow{\boldsymbol{r}}, t) B → ( r → , t ) = 1 c R ^ × E → ( r → , t )
Therefore, the
(
E
→
,
B
→
)
(
E
→
,
B
→
)
( vec(E), vec(B)) (\overrightarrow{\boldsymbol{E}}, \overrightarrow{\boldsymbol{B}}) ( E → , B → ) due to an accelerated point charge are:
E
→
(
r
→
,
t
)
=
q
4
Ï€
ϵ
0
R
(
R
→
â‹…
u
→
)
3
[
(
c
2
−
v
2
)
u
→
+
R
→
×
(
u
→
×
a
→
)
]
B
→
(
r
→
,
t
)
=
1
c
R
^
×
E
→
(
r
→
,
t
)
E
→
(
r
→
,
t
)
=
q
4
Ï€
ϵ
0
R
(
R
→
â‹…
u
→
)
3
c
2
−
v
2
u
→
+
R
→
×
(
u
→
×
a
→
)
B
→
(
r
→
,
t
)
=
1
c
R
^
×
E
→
(
r
→
,
t
)
{:[ vec(E)( vec(r)”,”t)=(q)/(4piepsilon_(0))(R)/(( vec(R)* vec(u))^(3))[(c^(2)-v^(2)) vec(u)+ vec(R)xx( vec(u)xx vec(a))]],[ vec(B)( vec(r)”,”t)=(1)/(c) hat(R)xx vec(E)( vec(r)”,”t)]:} \begin{gathered}
\overrightarrow{\boldsymbol{E}}(\overrightarrow{\boldsymbol{r}}, t)=\frac{q}{4 \pi \epsilon_0} \frac{R}{(\overrightarrow{\boldsymbol{R}} \cdot \overrightarrow{\boldsymbol{u}})^3}\left[\left(c^2-v^2\right) \overrightarrow{\boldsymbol{u}}+\overrightarrow{\boldsymbol{R}} \times(\overrightarrow{\boldsymbol{u}} \times \overrightarrow{\boldsymbol{a}})\right] \\
\overrightarrow{\boldsymbol{B}}(\overrightarrow{\boldsymbol{r}}, t)=\frac{1}{c} \hat{\boldsymbol{R}} \times \overrightarrow{\boldsymbol{E}}(\overrightarrow{\boldsymbol{r}}, t) \\
\end{gathered} E → ( r → , t ) = q 4 π ϵ 0 R ( R → ⋅ u → ) 3 [ ( c 2 − v 2 ) u → + R → × ( u → × a → ) ] B → ( r → , t ) = 1 c R ^ × E → ( r → , t )
Observations:
•
B
→
B
→
vec(B) \overrightarrow{\boldsymbol{B}} B → due to a point charge is always perpendicular to
E
→
E
→
vec(E) \overrightarrow{\boldsymbol{E}} E → \• 1st term in eq.(7) varies as
1
/
R
2
1
/
R
2
1//R^(2) 1 / R^2 1 / R 2 : Velocity field or generalized Coulomb field. If
v
→
=
0
v
→
=
0
vec(v)=0 \overrightarrow{\boldsymbol{v}}=0 v → = 0 and
a
→
=
0
a
→
=
0
vec(a)=0 \overrightarrow{\boldsymbol{a}}=0 a → = 0 , then
E
→
E
→
vec(E) \overrightarrow{\boldsymbol{E}} E → reduces to
E
→
=
1
4
Ï€
ϵ
0
q
R
2
R
^
E
→
=
1
4
Ï€
ϵ
0
q
R
2
R
^
vec(E)=(1)/(4piepsilon_(0))(q)/(R^(2)) hat(R) \overrightarrow{\boldsymbol{E}}=\frac{1}{4 \pi \epsilon_0} \frac{q}{R^2} \hat{\boldsymbol{R}} E → = 1 4 π ϵ 0 q R 2 R ^
• 2nd term in eq.(7) varies as
1
/
R
1
/
R
1//R 1 / R 1 / R : Acceleration field or Radiation field